
© 2005 Microchip Technology Inc. DS51288F

MPLAB® C18
C COMPILER

USER’S GUIDE

DS51288F-page ii © 2005 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total
Endurance and WiperLock are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper. 11/12/04

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page iii

Table of Contents

Preface .. 1

Chapter 1. Introduction
1.1 Overview .. 7

1.2 Invoking the Compiler .. 7
1.2.1 Creating Output Files ... 8
1.2.2 Displaying Diagnostics... 8
1.2.3 Defining Macros ... 9
1.2.4 Selecting the Processor ... 9
1.2.5 Selecting the Mode .. 9

Chapter 2. Language Specifics
2.1 Data Types and Limits ... 11

2.1.1 Integer Types ... 11
2.1.2 Floating-point Types .. 11

2.2 Data Type Storage - Endianness... 12

2.3 Storage Classes... 12
2.3.1 Overlay... 12
2.3.2 static Function Arguments ... 13

2.4 Storage Qualifiers .. 14
2.4.1 near/far Data Memory Objects .. 14
2.4.2 near/far Program Memory Objects.. 14
2.4.3 ram/rom Qualifiers.. 14

2.5 Include File Search Paths .. 15
2.5.1 System Header Files.. 15
2.5.2 User Header Files .. 15

2.6 Predefined Macro Names .. 15

2.7 ISO Divergences.. 15
2.7.1 Integer Promotions... 15
2.7.2 Numeric Constants .. 16
2.7.3 String Constants .. 16
2.7.4 stdio.h Functions ... 18

2.8 Language Extensions .. 18
2.8.1 Anonymous Structures... 18
2.8.2 Inline Assembly.. 19

MPLAB® C18 C Compiler User’s Guide

DS51288F-page iv © 2005 Microchip Technology Inc.

2.9 Pragmas .. 20
2.9.1 #pragma sectiontype..20
2.9.2 #pragma interruptlow fname /

#pragma interrupt fname ...27
2.9.3 #pragma varlocate bank variable-name

#pragma varlocate "section-name" variable-name31
2.9.4 #pragma config ...33

2.10 Processor-specific Header Files .. 34

2.11 Processor-specific Register Definitions Files... 36

Chapter 3. Run-time Model
3.1 Memory Models ... 37

3.2 Calling Conventions... 38
3.2.1 Non-extended Mode Convention..38
3.2.2 Extended Mode Convention ...39
3.2.3 Return Values...40
3.2.4 Managing the Software Stack...41
3.2.5 Mixing C and Assembly ..41

3.3 Startup Code.. 46
3.3.1 Default Behavior ...46
3.3.2 Customization...47

3.4 Compiler Managed Resources .. 48

Chapter 4. Optimizations
4.1 Duplicate String Merging ... 49

4.2 Branches.. 50

4.3 Banking.. 50

4.4 WREG Content Tracking ... 51

4.5 Code Straightening .. 51

4.6 Tail Merging ... 52

4.7 Unreachable Code Removal.. 53

4.8 Copy Propagation .. 53

4.9 Redundant Store Removal .. 54

4.10 Dead Code Removal ... 55

4.11 Procedural Abstraction .. 55

Chapter 5. Sample Application

Appendix A. COFF File Format
A.1 struct filehdr - File Header... 61

A.1.1 unsigned short f_magic..61
A.1.2 unsigned short f_nscns..61
A.1.3 unsigned long f_timdat..61
A.1.4 unsigned long f_symptr..61
A.1.5 unsigned long f_nsyms ..61
A.1.6 unsigned short f_opthdr..61
A.1.7 unsigned short f_flags..62

Table of Contents

© 2005 Microchip Technology Inc. DS51288F-page v

A.2 struct opthdr - Optional File Header... 62
A.2.1 unsigned short magic.. 62
A.2.2 unsigned short vstamp ... 62
A.2.3 unsigned long proc_type ... 63
A.2.4 unsigned long rom_width_bits .. 64
A.2.5 unsigned long ram_width_bits .. 64

A.3 struct scnhdr - Section Header ... 64
A.3.1 union _s ... 65
A.3.2 unsigned long s_size.. 65
A.3.3 unsigned long s_scnptr ... 65
A.3.4 unsigned long s_relptr ... 65
A.3.5 unsigned long s_lnnoptr ... 65
A.3.6 unsigned short s_nreloc ... 65
A.3.7 unsigned short s_nlnno ... 65
A.3.8 unsigned long s_flags ... 66

A.4 struct reloc - Relocation Entry ... 66
A.4.1 unsigned long r_vaddr ... 66
A.4.2 unsigned long r_symndx ... 66
A.4.3 short r_offset .. 66
A.4.4 unsigned short r_type ... 67

A.5 struct syment - Symbol Table Entry .. 68
A.5.1 union _n ... 68
A.5.2 unsigned long n_value.. 68
A.5.3 short n_scnum .. 69
A.5.4 unsigned short n_type.. 69
A.5.5 char n_sclass .. 70
A.5.6 unsigned char n_numaux .. 70

A.6 struct coff_lineno - Line Number Entry ... 71
A.6.1 unsigned long l_srcndx.. 71
A.6.2 unsigned short l_lnno.. 71
A.6.3 unsigned long l_paddr.. 71
A.6.4 unsigned short l_flags.. 71
A.6.5 unsigned long l_fcnndx.. 71

A.7 struct aux_file - Auxiliary Symbol Table Entry for a Source File 71
A.7.1 unsigned long x_offset .. 71
A.7.2 unsigned long x_incline ... 71
A.7.3 unsigned char x_flags.. 72

A.8 struct aux_scn - Auxiliary Symbol Table Entry for a Section 72
A.8.1 unsigned long x_scnlen.. 72
A.8.2 unsigned short x_nreloc ... 72
A.8.3 unsigned short x_nlinno ... 72

A.9 struct aux_tag - Auxiliary Symbol Table Entry for a
struct/union/enum Tagname .. 72
A.9.1 unsigned short x_size.. 72
A.9.2 unsigned long x_endndx.. 72

A.10 struct aux_eos - Auxiliary Symbol Table Entry for an End of
struct/union/enum .. 73
A.10.1 unsigned long x_tagndx.. 73
A.10.2 unsigned short x_size.. 73

MPLAB® C18 C Compiler User’s Guide

DS51288F-page vi © 2005 Microchip Technology Inc.

A.11 struct aux_fcn - Auxiliary Symbol Table Entry for a Function Name.. 73
A.11.1 unsigned long x_tagndx ..73
A.11.2 unsigned long x_lnnoptr ..73
A.11.3 unsigned long x_endndx ..73
A.11.4 short x_actscnum..73

A.12 struct aux_fcn_calls - Auxiliary Symbol Table Entry for
Function Call References .. 74
A.12.1 unsigned long x_calleendx..74
A.12.2 unsigned long x_is_interrupt ...74

A.13 struct aux_arr - Auxiliary Symbol Table Entry for an Array................ 74
A.13.1 unsigned long x_tagndx ..74
A.13.2 unsigned short x_size ..74
A.13.3 unsigned short x_dimen[X_DIMNUM] ..74

A.14 struct aux_eobf - Auxiliary Symbol Table Entry for the End of a
Block or Function ... 75
A.14.1 unsigned short x_lnno ..75

A.15 struct aux_bobf - Auxiliary Symbol Table Entry for the
Beginning of a Block or Function ... 75
A.15.1 unsigned short x_lnno ..75
A.15.2 unsigned long x_endndx ..75

A.16 struct aux_var - Auxiliary Symbol Table Entry for a
Variable of Type struct/union/enum ... 75
A.16.1 unsigned long x_tagndx ..75
A.16.2 unsigned short x_size ..75

A.17 struct aux_field - Auxiliary Entry for a bit field.................................. 76
A.17.1 unsigned short x_size ..76

Appendix B. ANSI Implementation-defined Behavior
B.1 Introduction .. 77
B.2 Identifiers ... 77
B.3 Characters ... 77
B.4 Integers.. 78
B.5 Floating-point ... 78
B.6 Arrays and Pointers ... 79
B.7 Registers.. 79
B.8 Structures and Unions ... 79
B.9 bit fields.. 79
B.10 Enumerations... 80
B.11 Switch Statement ... 80
B.12 Preprocessing Directives ... 80

Appendix C. Command-line Summary

Appendix D. MPLAB C18 Diagnostics
D.1 Errors ... 83

D.2 Warnings.. 95

D.3 Messages .. 97

Table of Contents

© 2005 Microchip Technology Inc. DS51288F-page vii

Appendix E. Extended Mode
E.1 Source Code Compatibility .. 99

E.1.1 Stack Frame Size .. 99
E.1.2 static Parameters .. 99
E.1.3 overlay Keyword... 99
E.1.4 Inline Assembly ... 100
E.1.5 Predefined Macros .. 100

E.2 Command-line Option Differences... 101

E.3 COFF File Differences ... 101
E.3.1 Generic Processor... 101
E.3.2 File Header’s f_flags Field... 101

Glossary.. 103

Index.. 109

Worldwide Sales and Service ... 116

MPLAB® C18 C Compiler User’s Guide

DS51288F-page viii © 2005 Microchip Technology Inc.

NOTES:

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 1

Preface

INTRODUCTION

This document discusses the technical details of the MPLAB® C18 compiler. This
document will explain all functionality of the MPLAB C18 compiler. It assumes that the
programmer already:

• knows how to write C programs
• knows how to use the MPLAB Integrated Development Environment (IDE) to

create and debug projects
• has read and understands the processor data sheet for which code is being

written

DOCUMENT LAYOUT

This document layout is as follows:

• Chapter 1: Introduction – Provides an overview of the MPLAB C18 compiler and
information on invoking the compiler.

• Chapter 2: Language Specifics – Discusses how the MPLAB C18 compiler
differs from the ANSI standard.

• Chapter 3: Run-time Model – Discusses how the MPLAB C18 compiler utilizes
the resources of the PIC18 PICmicro® microcontrollers.

• Chapter 4: Optimizations – Discusses the optimizations that are performed by
the MPLAB C18 compiler.

• Chapter 5: Sample Application – Provides a sample application and describes
the source code with references to the specific topics discussed in the User’s
Guide.

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 2 © 2005 Microchip Technology Inc.

• Appendix A: COFF File Format – Provides details of the Microchip COFF
format.

• Appendix B: ANSI Implementation-defined Behavior – Discusses MPLAB C18
implementation-defined behavior as required by the ANSI standard.

• Appendix C: Command-line Summary – Lists command-line options along with
references to sections that discuss each of the command-line options.

• Appendix D: MPLAB C18 Diagnostics – Lists errors, warnings and messages.
• Appendix E: Extended Mode – Discusses differences between Non-extended

and Extended modes.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB IDE User’s Guide
Courier font:
Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Italic Courier A variable argument file.o, where file can be any valid
filename

0bnnnn A binary number where n is a
binary digit

0b00100, 0b10

0xnnnn A hexadecimal number where
n is a hexadecimal digit

0xFFFF, 0x007A

Square brackets [] Optional arguments mcc18 [options] file [options]

Ellipses... Replaces repeated text var_name [, var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

Icon:
Features supported only in
the full version of the
software.

1.2.5 Selecting the Mode

Preface

© 2005 Microchip Technology Inc. DS51288F-page 3

PIC18 DEVELOPMENT REFERENCES

readme.c18

This file is included with the software and contains update information that may not be
included in this document.

PIC18 Configuration Settings Addendum (DS51537)

Lists the Configuration Bit Settings for the Microchip PIC18 devices supported by the
MPLAB C18 C compiler’s #pragma config directive and the MPASM™ CONFIG
directive.

MPLAB® C18 C Compiler Getting Started Guide (DS51295)

Describes how to install the MPLAB C18 compiler, how to write simple programs and
how to use the MPLAB IDE with the compiler.

MPLAB® C18 C Compiler Libraries (DS51297)

Reference guide for MPLAB C18 libraries and precompiled object files. Lists all library
functions provided with the MPLAB C18 C compiler with detailed descriptions of their
use.

MPLAB® IDE V6.XX Quick Start Guide (DS51281)

Describes how to set up the MPLAB IDE software and use it to create projects and
program devices.

MPASM™ User’s Guide with MPLINK™ Linker and MPLIB™ Librarian (DS33014)

Describes how to use the Microchip PICmicro MCU assembler (MPASM), linker
(MPLINK) and librarian (MPLIB).

PICmicro® 18C MCU Family Reference Manual (DS39500)

Focuses on the Enhanced MCU family of devices. The operation of the Enhanced MCU
family architecture and peripheral modules is explained but does not cover the
specifics of each device.

PIC18 Device Data Sheets and Application Notes

Data sheets describe the operation and electrical specifications of PIC18 devices.
Application notes describe how to use PIC18 devices.

To obtain any of the above listed documents, visit the Microchip web site
(www.microchip.com) to retrieve these documents in Adobe Acrobat (.pdf) format.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 4 © 2005 Microchip Technology Inc.

C REFERENCES

American National Standard for Information Systems – Programming Language – C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition.
Prentice-Hall, Englewood Cliffs, New Jersey 07632.

Covers the C programming language in great detail. This book is an authoritative
reference manual that provides a complete description of the C language, the
run-time libraries and a style of C programming that emphasizes correctness,
portability and maintainability.

Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, New Jersey 07632.

Presents a concise exposition of C as defined by the ANSI standard. This book
is an excellent reference for C programmers.

Kochan, Steven G. Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Another excellent reference for learning ANSI C, used in colleges and
universities.

Peatman, John B. Embedded Design with the PIC18F452 Microcontroller, First
Edition. Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Focuses on Microchip Technology’s PIC18FXXX family and writing enhanced
application code.

Van Sickle, Ted. Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

Although this book focuses on Motorola microcontrollers, the basic principles of
programming with C for microcontrollers is useful.

OTHER REFERENCES

Standards Committee of the IEEE Computer Society - IEEE Standard for Binary
Floating-Point Arithmetic. The Institute of Electrical and Electronics Engineers,
Inc, 345 East 47th. Street, New York, New York, 10017.

This standard describes the floating point format used in MPLAB C18.

Preface

© 2005 Microchip Technology Inc. DS51288F-page 5

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQ), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• Compilers – The latest information on Microchip C compilers and other language
tools. These include the MPLAB C17, MPLAB C18 and MPLAB C30 C compilers;
MPASM™ and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30
object linkers; and MPLIB™ and MPLAB LIB30 object librarians.

• Emulators – The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

• In-Circuit Debuggers – The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

• MPLAB IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB SIM and MPLAB SIM30 simulators, MPLAB
IDE Project Manager and general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® II device programmers and the PICSTART®
Plus development programmer.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 6 © 2005 Microchip Technology Inc.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
• Development Systems Information Line

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

In addition, there is a Development Systems Information Line which lists the latest
versions of Microchip’s development systems software products. This line also
provides information on how customers can receive currently available upgrade kits.

The Development Systems Information Line numbers are:

1-800-755-2345 – United States and most of Canada

1-480-792-7302 – Other International Locations

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 7

Chapter 1. Introduction

1.1 OVERVIEW

The MPLAB C18 compiler is a free-standing, optimizing ANSI C compiler for the PIC18
PICmicro microcontrollers (MCU). The compiler deviates from the ANSI standard
X3.159-1989 only where the standard conflicts with efficient PICmicro MCU support.
The compiler is a 32-bit Windows console application and is fully compatible with
Microchip’s MPLAB IDE, allowing source-level debugging with the MPLAB ICE
in-circuit emulator, the MPLAB ICD 2 in-circuit debugger or the MPLAB SIM simulator.

The MPLAB C18 compiler has the following features:

• ANSI ‘89 compatibility
• Integration with the MPLAB IDE for easy-to-use project management and

source-level debugging
• Generation of relocatable object modules for enhanced code reuse
• Compatibility with object modules generated by the MPASM assembler, allowing

complete freedom in mixing assembly and C programming in a single project
• Transparent read/write access to external memory
• Strong support for inline assembly when total control is absolutely necessary
• Efficient code generator engine with multi-level optimization
• Extensive library support, including PWM, SPI™, I2C™, UART, USART, string

manipulation and math libraries
• Full user-level control over data and code memory allocation

1.2 INVOKING THE COMPILER

The MPLAB® C18 Getting Started Guide (DS51295) describes how to use the compiler
with the MPLAB IDE. The compiler can also be invoked from the command line. The
command-line usage is:

mcc18 [options] file [options]

A single source file and any number of command-line options can be specified. The
--help command-line option lists all command-line options accepted by the compiler.
The -verbose command-line option causes the compiler to show a banner containing
the version number and the total number of errors, warnings and messages upon
completion.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 8 © 2005 Microchip Technology Inc.

1.2.1 Creating Output Files

By default, the compiler will generate an output object file named file.o, where file
is the name of the source file specified on the command line minus the extension. The
output object file name can be overridden with the -fo command-line option. For
example:

mcc18 -fo bar.o foo.c

If the source file contains errors, then the compiler generates an error file named
file.err, where file is the name of the source file specified on the command line
minus the extension. The error file name can be overridden using the -fe
command-line option. For example:

mcc18 -fe bar.err foo.c

1.2.2 Displaying Diagnostics

Diagnostics can be controlled using the -w and -nw command-line options. The -w
command-line option sets the level of warning diagnostics (1, 2 or 3). Table 1-1
shows the level of warning diagnostics and the type of diagnostics that are shown. The
-nw command-line option suppresses specific messages (Appendix D. “MPLAB C18
Diagnostics” or the --help-message-list command-line option lists all messages
generated by the compiler). Help on all messages can be seen using the
--help-message-all command-line option. For help on a specific diagnostic, the
--help-message command-line option can be used. For example:

mcc18 --help-message=2068

displays the following results:

2068: obsolete use of implicit 'int' detected.

The ANSI standard allows a variable to be declared without a base type
being specified, e.g., "extern x;", in which case a base type of 'int'
is implied. This usage is deprecated by the standard as obsolete, and
therefore a diagnostic is issued to that effect.

TABLE 1-1: WARNING LEVELS

Warning Level Diagnostics Shown

1 Errors (fatal and non-fatal)

2 Level 1 plus warnings

3 Level 2 plus messages

Introduction

© 2005 Microchip Technology Inc. DS51288F-page 9

1.2.3 Defining Macros

The -D command-line option allows a macro to be defined. The -D command-line
option can be specified in one of two ways: -Dname or -Dname=value. -Dname
defines the macro name with 1 as its definition. -Dname=value defines the macro
name with value as its definition. For example:

mcc18 -DMODE

defines the macro MODE to have a value of 1, whereas:

mcc18 -DMODE=2

defines the macro MODE to have a value of 2.

An instance of utilizing the -D command-line option is in conditional compilation of
code. For example:

#if MODE == 1
x = 5;

#elif MODE == 2
x = 6;

#else
x = 7;

#endif

1.2.4 Selecting the Processor

By default, MPLAB C18 compiles an application for a generic PIC18 PICmicro
microcontroller. The object file can be limited to a specific processor with the
-pprocessor command-line option, where processor specifies the particular
processor to utilize. For example, to limit an object file for use with only the PIC18F452,
the command-line option -p18f452 should be used. The command-line option
-p18cxx explicitly specifies that the source is being compiled for a generic PIC18
microcontroller.

1.2.5 Selecting the Mode

The compiler can operate in one of two different modes: Extended1 or Non-extended.
When operating in the Extended mode, the compiler will utilize the extended instruc-
tions (i.e., ADDFSR, ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK)
and the indexed with literal offset addressing, which generally requires fewer instruc-
tions for accessing stack-based variables (resulting in a smaller program memory
image). When operating in Non-extended mode, the compiler will not utilize the
extended instructions nor the indexed with literal offset addressing. The --extended
and --no-extended command-line options tell the compiler the mode in which to
operate. When the --extended command-line option is specified, the compiler
expects that the processor selected with the -p option supports the extended instruc-
tion set or is being compiled for a generic PIC18 microcontroller (see Section 1.2.4
“Selecting the Processor”). The --no-extended command-line option can be
utilized with any PIC18 microcontroller, including the generic microcontroller. If neither
the --extended nor the --no-extended command-line options is specified on the
command line, the compiler will operate in Non-extended mode, regardless of the
processor selected. Table 1-2 outlines the mode in which the compiler will operate
based on the command-line options specified.

1. When the time limit for the demo version expires, the compiler cannot operate in Extended mode.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 10 © 2005 Microchip Technology Inc.

TABLE 1-2: MODE SELECTION

-p extended -p no-extended -p18cxx
No Processor

Specified

--extended Extended Error Extended Extended

--no-extended Non-extended Non-extended Non-extended Non-extended

Not Specified Non-extended Non-extended Non-extended Non-extended

Note: If the compiler is invoked with mcc18 --help, the help displayed will be for
the compiler operating in the Non-extended mode; however, not all of the
command-line options are valid when the compiler is operating in the Extended
mode. The command line mcc18 --extended --help should be utilized to see
help for the compiler operating in the Extended mode.

Note: Other command-line options are discussed throughout the User’s Guide,
and a summary of all the command-line options can be found in Appendix
C. “Command-line Summary”.

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 11

Chapter 2. Language Specifics

2.1 DATA TYPES AND LIMITS

2.1.1 Integer Types

The MPLAB C18 compiler supports the standard ANSI-defined integer types. The
ranges of the standard integer types are documented in Table 2-1. In addition, MPLAB
C18 supports a 24-bit integer type short long int (or long short int), in both
a signed and unsigned variety. The ranges of this type are also documented in
Table 2-1.

TABLE 2-1: INTEGER DATA TYPE SIZES AND LIMITS

2.1.2 Floating-point Types

32-bit floating-point types are native to MPLAB C18 using either the double or float
data types. MPLAB C18 utilizes the IEEE-754 floating-point standard to represent
floating-point types. The ranges of the floating-point type are documented in Table 2-2.

TABLE 2-2: FLOATING-POINT DATA TYPE SIZES AND LIMITS

Type Size Minimum Maximum

char(1,2) 8 bits -128 127

signed char 8 bits -128 127

unsigned char 8 bits 0 255

int 16 bits -32,768 32,767

unsigned int 16 bits 0 65,535

short 16 bits -32,768 32,767

unsigned short 16 bits 0 65,535

short long 24 bits -8,388,608 8,388,607

unsigned short long 24 bits 0 16,777,215

long 32 bits -2,147,483,648 2,147,483,647

unsigned long 32 bits 0 4,294,967,295

Note 1: A plain char is signed by default.
2: A plain char may be unsigned by default via the -k command-line option.

Type Size
Minimum
Exponent

Maximum
Exponent

Minimum Normalized Maximum Normalized

float 32 bits -126 128 2–126 ≈ 1.17549435e - 38 2128 * (2-2–15) ≈ 6.80564693e + 38

double 32 bits -126 128 2–126 ≈ 1.17549435e - 38 2128 * (2-2–15) ≈ 6.80564693e + 38

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 12 © 2005 Microchip Technology Inc.

2.2 DATA TYPE STORAGE - ENDIANNESS

Endianness refers to the ordering of bytes in a multi-byte value. MPLAB C18 stores
data in little-endian format. Bytes at lower addresses have lower significance (the value
is stored “little-end-first”). For example:

#pragma idata test=0x0200
long l=0xAABBCCDD;

results in a memory layout as follows:

2.3 STORAGE CLASSES

MPLAB C18 supports the ANSI standard storage classes (auto, extern, register,
static and typedef).

2.3.1 Overlay

The MPLAB C18 compiler introduces a storage class of overlay. The overlay
storage class applies only when the compiler is operating in Non-extended mode (see
Section 1.2.5 “Selecting the Mode”). The overlay storage class may be applied to
local variables (but not formal parameters, function definitions or global variables). The
overlay storage class will allocate the associated symbols into a function-specific,
static overlay section. Such a variable will be allocated statically, but initialized upon
each function entry. For example, in:

void f (void)
{
 overlay int x = 5;
 x++;
}

x will be initialized to 5 upon each function entry, although its storage will be statically
allocated. If no initializer is present, then its value upon function entry is undefined.

The MPLINK linker will attempt to overlay local storage specified as overlay from
functions that are guaranteed not to be active simultaneously. For example, in:

int f (void)
{
 overlay int x = 1;
 return x;
}

int g (void)
{
 overlay int y = 2;
 return y;
}

Address 0x0200 0x0201 0x0202 0x0203

Content 0xDD 0xCC 0xBB 0xAA

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 13

If f and g will never be active at the same time, x and y become candidates for sharing
the same memory location. However, in:

int f (void)
{
 overlay int x = 1;
 return x;
}

int g (void)
{
 overlay int y = 2;
 y = f ();
 return y;
}

since f and g may be simultaneously active, x and y will not be overlaid. The
advantage of using overlay locals is that they are statically allocated, which means
that, in general, fewer instructions are required to access them (resulting in a smaller
program memory image). At the same time, the total data memory allocation required
for these variables may be less than what would be required had they been declared
as static due to the fact that some of the variables may be overlaid.

If the MPLINK linker detects a recursive function that contains a local variable of
storage class overlay, it emits an error and aborts. If the MPLINK linker detects a call
through a function pointer in any module and a local variable of storage class overlay
in any (and not necessarily the same) module, it emits an error and aborts.

The default storage class for local variables is auto. This can be overridden explicitly
with the static or overlay keywords or implicitly with either the -scs (static local
variables) or -sco (overlay local variables) command-line option. For completeness,
MPLAB C18 also supports the -sca command-line option. This option allows the
storage class for local variables to be explicitly specified as auto.

2.3.2 static Function Arguments

Function parameters can have storage class auto or static. An auto parameter is
placed on the software stack, enabling reentrancy. A static parameter is allocated
globally, enabling direct access for generally smaller code. static parameters are
valid only when the compiler is operating in Non-extended mode (see Section 1.2.5
“Selecting the Mode”).

The default storage class for function parameters is auto. This can be overridden
explicitly with the static keyword or implicitly with the -scs command-line option.
The -sco command-line option will also implicitly override function parameters’
storage class with static.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 14 © 2005 Microchip Technology Inc.

2.4 STORAGE QUALIFIERS

In addition to the ANSI standard storage qualifiers (const, volatile), the MPLAB
C18 compiler introduces storage qualifiers of far, near, rom and ram. Syntactically,
these new qualifiers bind to identifiers just as the const and volatile qualifiers do
in ANSI C. Table 2-3 shows the location of an object based on the storage qualifiers
specified when it was defined. The default storage qualifiers for an object defined
without explicit storage qualifiers are far and ram.

TABLE 2-3: LOCATION OF OBJECT BASED ON STORAGE QUALIFIERS

2.4.1 near/far Data Memory Objects

The far qualifier is used to denote that a variable that is located in data memory lives
in a memory bank and that a bank switching instruction is required prior to accessing
this variable. The near qualifier is used to denote that a variable located in data
memory lives in access RAM.

2.4.2 near/far Program Memory Objects

The far qualifier is used to denote that a variable that is located in program memory
can be found anywhere in program memory, or, if a pointer, that it can access up to and
beyond 64K of program memory space. The near qualifier is used to denote that a
variable located in program memory is found at an address less than 64K, or, if a
pointer, that it can access only up to 64K of program memory space.

2.4.3 ram/rom Qualifiers

Because the PICmicro microcontrollers use separate program memory and data
memory address busses in their design, MPLAB C18 requires extensions to distinguish
between data located in program memory and data located in data memory. The
ANSI/ISO C standard allows for code and data to be in separate address spaces, but
this is not sufficient to locate data in the code space as well. To this purpose, MPLAB
C18 introduces the rom and ram qualifiers. The rom qualifier denotes that the object is
located in program memory, whereas the ram qualifier denotes that the object is
located in data memory.

Pointers can point to either data memory (ram pointers) or program memory (rom
pointers). Pointers are assumed to be ram pointers unless declared as rom. The size
of a pointer is dependent on the type of the pointer and is documented in Table 2-4.

TABLE 2-4: POINTER SIZES

rom ram

far Anywhere in program memory Anywhere in data memory (default)

near In program memory with address less
than 64K

In access memory

Note: When writing to a rom variable, the compiler uses a TBLWT instruction;
however, there may be additional application code that needs to be
written based on the type of memory being utilized. See the data sheet
for more information.

Pointer Type Example Size

Data memory pointer char * dmp; 16 bits

Near program memory pointer rom near char * npmp; 16 bits

Far program memory pointer rom far char * fpmp; 24 bits

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 15

2.5 INCLUDE FILE SEARCH PATHS

2.5.1 System Header Files

Source files included with #include <filename> are searched for in the path
specified in the MCC_INCLUDE environment variable and the directories specified via
the -I command-line option. Both the MCC_INCLUDE environment variable and the -I
values are a semi-colon delimited list of directories to search. If the included file exists
in both a directory listed in the MCC_INCLUDE environment variable and a directory
listed in a -I command-line option, the file will be included from the directory listed in
the -I command-line option. This allows the MCC_INCLUDE environment variable to
be overridden with a -I command-line option.

2.5.2 User Header Files

Source files included with #include “filename” are searched for in the directory
containing the including file. If not found, the file is searched for as a system header file
(see Section 2.5.1 “System Header Files”).

2.6 PREDEFINED MACRO NAMES

In addition to the standard predefined macro names, MPLAB C18 provides the
following predefined macros:

__18CXX The constant 1, intended to indicate the MPLAB C18 compiler.

__PROCESSOR The constant 1 if compiled for the particular processor. For example,
__18C452 would be defined as the constant 1 if compiled with the -p18c452
command-line option and __18F258 would be defined as the constant 1 if
compiled with the -p18f258 command-line option.

__SMALL__ The constant 1 if compiled with the -ms command-line option.

__LARGE__ The constant 1 if compiled with the -ml command-line option.

__TRADITIONAL18__ The constant 1 if the Non-extended mode is being used
(see Section 1.2.5 “Selecting the Mode”).

__EXTENDED18__ The constant 1 if the Extended mode is being used
(see Section 1.2.5 “Selecting the Mode”).

2.7 ISO DIVERGENCES

2.7.1 Integer Promotions

ISO mandates that all arithmetic be performed at int precision or greater. By default,
MPLAB C18 will perform arithmetic at the size of the largest operand, even if both
operands are smaller than an int. The ISO mandated behavior can be instated via the
-Oi command-line option.

For example:

unsigned char a, b;
unsigned i;

a = b = 0x80;
i = a + b; /* ISO requires that i == 0x100, but in C18 i == 0 */

Note that this divergence also applies to constant literals. The chosen type for constant
literals is the first one from the appropriate group that can represent the value of the
constant without overflow.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 16 © 2005 Microchip Technology Inc.

For example:

#define A 0x10 /* A will be considered a char unless -Oi
 specified */
#define B 0x10 /* B will be considered a char unless -Oi
 specified */
#define C (A) * (B)

unsigned i;
i = C; /* ISO requires that i == 0x100, but in C18 i == 0 */

2.7.2 Numeric Constants

MPLAB C18 supports the standard prefixes for specifying hexadecimal (0x) and octal
(0) values and adds support for specifying binary values using the 0b prefix. For
example, the value two hundred thirty seven may be denoted as the binary constant
0b11101101.

2.7.3 String Constants

The primary use of data located in program memory is for static strings. In keeping
with this, MPLAB C18 automatically places all string constants in program memory.
This type of a string constant is “array of char located in program memory”, (const
rom char []). The .stringtable section is a romdata (see Section 2.9.1
“#pragma sectiontype”) section that contains all constant strings. For example the
string “hello” in the following would be located in the .stringtable section:

strcmppgm2ram (Foo, "hello");

Due to the fact that constant strings are kept in program memory, there are multiple
versions of the standard functions that deal with strings. For example, the strcpy
function has four variants, allowing the copying of a string to and from data and
program memory:

/*
 * Copy string s2 in data memory to string s1 in data memory
 */
char *strcpy (auto char *s1, auto const char *s2);

/*
 * Copy string s2 in program memory to string s1 in data
 * memory
 */
char *strcpypgm2ram (auto char *s1, auto const rom char *s2);

/*
 * Copy string s2 in data memory to string s1 in program
 * memory
 */
rom char *strcpyram2pgm (auto rom char *s1, auto const char *s2);

/*
 * Copy string s2 in program memory to string s1 in program
 * memory
 */
rom char *strcpypgm2pgm (auto rom char *s1,
 auto const rom char *s2);

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 17

When using MPLAB C18, a string table in program memory can be declared as:

rom const char table[][20] = { "string 1", "string 2",
 "string 3", "string 4" };
rom const char *rom table2[] = { "string 1", "string 2",
 "string 3", "string 4" };

The declaration of table declares an array of four strings that are each 20 characters
long, and so takes 80 bytes of program memory. table2 is declared as an array of
pointers to program memory. The rom qualifier after the * places the array of pointers
in program memory as well. All of the strings in table2 are 9 bytes long, and the array
is four elements long, so table2 takes (9*4+4*2) = 44 bytes of program memory.
Accesses to table2 may be less efficient than accesses to table, however, because
of the additional level of indirection required by the pointer.

An important consequence of the separate address spaces for MPLAB C18 is that
pointers to data in program memory and pointers to data in data memory are not
compatible. Two pointer types are not compatible unless they point to objects of
compatible types and the objects they point to are located in the same address space.
For example, a pointer to a string in program memory and a pointer to a string in data
memory are not compatible because they refer to different address spaces.

A function to copy a string from program to data memory could be written as follows:

void str2ram(static char *dest, static char rom *src)
{
 while ((*dest++ = *src++) != '\0')
 ;
}

The following code will send a string located in program memory to the USART on a
PIC18C452 using the PICmicro MCU C libraries. The library function to send a string
to the USART, putsUSART(const char *str), takes a pointer to a string as its
argument, but that string must be in data memory.

rom char mystring[] = "Send me to the USART";

void foo(void)
{
 char strbuffer[21];
 str2ram (strbuffer, mystring);
 putsUSART (strbuffer);
}

Alternatively, the library routine can be modified to read from a string located in program
memory.

/*
 * The only changes required to the library routine are to
 * change the name so the new routine does not conflict with
 * the original routine and to add the rom qualifier to the
 * parameter.
 */
void putsUSART_rom(static const rom char *data)
{
 /* Send characters up to the null */
 do
 {
 while (BusyUSART())
 ;

 /* Write a byte to the USART */
 putcUSART (*data);
 } while (*data++);
}

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 18 © 2005 Microchip Technology Inc.

2.7.4 stdio.h Functions

The output functions defined in stdio.h differ from the ANSI defined versions with
regards to data in program memory, floating-point format support, and MPLAB C18
specific extensions.

The functions puts and fputs expect the output string to be stored in program
memory. The functions vsprintf, vprintf, sprintf, printf, fprintf and
vfprintf expect the format string to be stored in program memory.

The functions vsprintf, vprintf, sprintf, printf, fprintf and vfprintf do
not support floating-point conversion specifiers.

The MPLAB C18 specific extensions for 24-bit integers and data in program memory
are described in Section 4.7 of MPLAB C18 C Compiler Libraries.

2.8 LANGUAGE EXTENSIONS

2.8.1 Anonymous Structures

MPLAB C18 supports anonymous structures inside of unions. An anonymous structure
has the form:

struct { member-list };

An anonymous structure defines an unnamed object. The names of the members of an
anonymous structure must be distinct from other names in the scope in which the
structure is declared. The members are used directly in that scope without the usual
member access syntax.

For example:

union foo
{
 struct
 {
 int a;
 int b;
 };
 char c;
} bar;
char c;

...

bar.a = c; /* 'a' is a member of the anonymous structure
 located inside 'bar' */

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 19

A structure for which objects or pointers are declared is not an anonymous structure.
For example:

union foo
{
 struct
 {
 int a;
 int b;
 } f, *ptr;
 char c;
} bar;
char c:

...

bar.a = c; /* error */
bar.ptr->a = c; /* ok */

The assignment to bar.a is illegal since the member name is not associated with any
particular object.

2.8.2 Inline Assembly

MPLAB C18 provides an internal assembler using a syntax similar to the MPASM
assembler. The block of assembly code must begin with _asm and end with _endasm.
The syntax within the block is:

[label:] [<instruction> [arg1[, arg2[, arg3]]]]

The internal assembler differs from the MPASM assembler as follows:

• No directive support
• Comments must be C or C++ notation
• Full text mnemonics must be used for table reads/writes. i.e.,
- TBLRD

- TBLRDPOSTDEC

- TBLRDPOSTINC

- TBLRDPREINC

- TBLWT

- TBLWTPOSTDEC

- TBLWTPOSTINC

- TBLWTPREINC

• No defaults for instruction operands – all operands must be fully specified
• Default radix is decimal
• Literals are specified using C radix notation, not MPASM assembler notation. For

example, a hex number should be specified as 0x1234, not H’1234’.
• Label must include colon
• Indexed addressing syntax (i.e., []) is not supported – must specify literal and

access bit (e.g., specify as CLRF 2,0, not CLRF [2])

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 20 © 2005 Microchip Technology Inc.

For example:

_asm
 /* User assembly code */
 MOVLW 10 // Move decimal 10 to count
 MOVWF count, 0

 /* Loop until count is 0 */
 start:
 DECFSZ count, 1, 0
 GOTO done
 BRA start
 done:
_endasm

It is generally recommended to limit the use of inline assembly to a minimum. Any
functions containing inline assembly will not be optimized by the compiler. To write large
fragments of assembly code, use the MPASM assembler and link the modules to the C
modules using the MPLINK linker.

2.9 PRAGMAS

2.9.1 #pragma sectiontype

The section declaration pragmas change the current section into which MPLAB C18
will allocate information of the associated type.

A section is a portion of an application located at a specific address of memory.
Sections can contain code or data. A section can be located in either program or data
memory. There are two types of sections for each type of memory.

• program memory
- code – contains executable instructions
- romdata – contains variables and constants

• data memory
- udata – contains statically allocated uninitialized user variables
- idata – contains statically allocated initialized user variables

Sections are absolute, assigned or unassigned. An absolute section is one that is given
an explicit address via the =address of the section declaration pragma. An assigned
section is one that is ascribed to a specific section via the SECTION directive of the
linker script. An unassigned section is one that is neither absolute nor assigned.

2.9.1.1 SYNTAX

section-directive:

pragma udata [attribute-list] [section-name [=address]]
| # pragma idata [attribute-list] [section-name [=address]]
| # pragma romdata [overlay] [section-name [=address]]
| # pragma code [overlay] [section-name [=address]]

attribute-list:

attribute
| attribute-list attribute

attribute:

access
| overlay

section-name: C identifier

address: integer constant

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 21

2.9.1.2 SECTION CONTENTS

A code section contains executable content, located in program memory. A
romdata section contains data allocated into program memory (normally variables
declared with the rom qualifier). For additional information on romdata usage (e.g., for
memory-mapped peripherals) see the MPLINK linker’s portion of the MPASM™ User’s
Guide with MPLINK™ and MPLIB™ (DS33014). A udata section contains uninitialized
global data statically allocated into data memory. An idata section contains initialized
global data statically allocated into data memory.

Table 2-5 shows which section each of the objects in the following example will be
located in:

rom int ri;
rom char rc = 'A';

int ui;
char uc;

int ii = 0;
char ic = 'A';

void foobar (void)
{
 static rom int foobar_ri;
 static rom char foobar_rc = 'Z';
 ...
}
void foo (void)
{
 static int foo_ui;
 static char foo_uc;
 ...
}

void bar (void)
{
 static int bar_ii = 5;
 static char bar_ic = 'Z';
 ...
}

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 22 © 2005 Microchip Technology Inc.

TABLE 2-5: OBJECTS’ SECTION LOCATION

2.9.1.3 DEFAULT SECTIONS

A default section exists for each section type in MPLAB C18 (see Table 2-6).

TABLE 2-6: DEFAULT SECTION NAMES

Specifying a section name that has been previously declared causes MPLAB C18 to
resume allocating data of the associated type into the specified section. The section
attributes must match the previous declaration; otherwise, an error will occur
(see Appendix D. “MPLAB C18 Diagnostics”).

A section pragma directive with no name resets the allocation of data of the associated
type to the default section for the current module. For example:

/*
 * The following statement changes the current code
 * section to the absolute section high_vector
 */
#pragma code high_vector=0x08
...

/*
 * The following statement returns to the default code
 * section
 */
#pragma code
...

Object Section Location

ri romdata

rc romdata

foobar_ri romdata

foobar_rc romdata

ui udata

uc udata

foo_ui udata

foo_uc udata

ii idata

ic idata

bar_ii idata

bar_ic idata

foo code

bar code

foobar code

Section Type Default Name

code .code_filename

romdata .romdata_filename

udata .udata_filename

idata .idata_filename

Note: filename is the name of the object file being generated. For example,
“mcc18 foo.c -fo=foo.o” will produce an object file with a default code
section named “.code_foo.o”.

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 23

When the MPLAB C18 compiler begins compiling a source file, it has default data
sections for both initialized and uninitialized data. These default sections are located in
either access or non-access RAM depending on whether the compiler was invoked
with a -Oa+ option or not, respectively. The -Oa+ command-line option applies only
when operating in Non-extended mode (see Section 1.2.5 “Selecting the Mode”).
When a #pragma udata [access] name directive is encountered in the source
code, the current uninitialized data section becomes name, which is located in access
or non-access RAM depending on whether the optional access attribute was
specified. The same is true for the current initialized data section when a
#pragma idata [access] name directive is encountered.

Objects are placed in the current initialized data section when an object definition with
an explicit initializer is encountered. Objects without an explicit initializer in their
definition are placed in the current uninitialized data section. For example, in the
following code snippet, i would be located in the current initialized data section and
u would be placed in the current uninitialized data section.

int i = 5;
int u;

void main(void)
{
 ...
}

If an object’s definition has an explicit far qualifier (see Section 2.4 “Storage
Qualifiers”), the object is located in non-access memory. Similarly, an explicit near
qualifier (see Section 2.4 “Storage Qualifiers”) tells the compiler that the object is
located in access memory. If an object’s definition has neither the near or far qualifier,
the compiler looks at whether the -Oa+ option was specified on the command line.

2.9.1.4 RESERVED SECTION NAMES

Table 2-7 lists the section names reserved for use by the compiler.

TABLE 2-7: RESERVED SECTION NAMES

Section Name Purpose

_entry_scn Contains a jump to the startup code. Located at the RESET
vector.

_startup_scn Contains the startup code, which calls the application’s
main() function.

_cinit_scn Contains the startup function that performs data
initialization.

.cinit Contains a copy of initialized data in program memory that
is used by the startup code to perform the initialization.

MATH_DATA Contains arguments, return values, and temporary
locations used by the math library functions.

.tmpdata Contains the compiler temporary variables for the
non-interrupt service routine source.

isr_tmp Contains the compiler temporary variables for the interrupt
service routine, isr (see Section 2.9.2 “#pragma
interruptlow fname / #pragma interrupt fname”).

.stringtable Contains all constant strings (see Section 2.7.3 “String
Constants”).

.code_filename Contains, by default, the executable content for the file,
filename.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 24 © 2005 Microchip Technology Inc.

Note: The * denotes a wildcard.

.idata_filename Contains, by default, the initialized data for the file,
filename.

.udata_filename Contains, by default, the uninitialized data for the file,
filename.

.romdata_filename Contains, by default, the data allocated in program memory
for the file, filename.

.config_address_filename Contains the configuration settings specified for the given
address and filename.

.stack Contains the software stack.

CTYPE Contains the executable content for the character classifi-
cation functions (see MPLAB C18 C Compiler Libraries).

D100TCYXCODE Contains the library function Delay100TCYx (see MPLAB
C18 C Compiler Libraries).

D10KTCYXCODE Contains the library function Delay10KTCYx (see MPLAB
C18 C Compiler Libraries).

D10TCYXCODE Contains the library function Delay10TCYx (see MPLAB
C18 C Compiler Libraries).

D1KTCYXCODE Contains the library function Delay1KTCYx (see MPLAB
C18 C Compiler Libraries).

DELAYDAT1 Contains uninitialized data used by some of the Delay
functions (see MPLAB C18 C Compiler Libraries).

DELAYDAT2 Contains uninitialized data used by some of the Delay
functions (see MPLAB C18 C Compiler Libraries).

PROG Contains the executable content of the math library (see
MPLAB C18 C Compiler Libraries).

SEED_DATA Contains the initialized data used by rand and srand
functions (see MPLAB C18 C Compiler Libraries).

SFR_BANKED* Contains the SFRs located in banked RAM.

SFR_UNBANKED* Contains the SFRs located in access RAM.

STDIO Contains the executable content of the peripheral output
routines for the standard library output functions.

STDLIB Contains the executable content of the data conversion
functions (see MPLAB C18 C Compiler Libraries).

STRING Contains the memory and string manipulation functions
(see MPLAB C18 C Compiler Libraries).

UARTCODE Contains the executable content for the software UART
functions (see MPLAB C18 C Compiler Libraries).

UARTDATA Contains uninitialized data used by the software UART
functions (see MPLAB C18 C Compiler Libraries).

TABLE 2-7: RESERVED SECTION NAMES (CONTINUED)

Section Name Purpose

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 25

2.9.1.5 SECTION ATTRIBUTES

The #pragma sectiontype directive may optionally include two section attributes –
access or overlay.

2.9.1.5.1 access

The access attribute tells the compiler to locate the specified section in an access
region of data memory (see the device data sheets or the PICmicro® 18C MCU Family
Reference Manual (DS39500) for more on access data memory).

Data sections with the access attribute will be placed into memory regions that are
defined as ACCESSBANK in the linker script file. These regions are those accessed via
the access bit of an instruction, i.e., no banking is required (see the device data sheet).
Variables located in an access section must be declared with the near keyword. For
example:

#pragma udata access my_access
/* all accesses to these will be unbanked */
near unsigned char av1, av2;

2.9.1.5.2 overlay

The overlay attribute permits other sections to be located at the same physical
address. This can conserve memory by locating variables to the same location (as long
as both are not active at the same time.) The overlay attribute can be used in
conjunction with the access attribute.

In order to overlay two sections, four requirements must be met:

1. Each section must reside in a different source file.
2. Both sections must have the same name.
3. If the access attribute is specified with one section, it must be specified with the

other.
4. If an absolute address is specified with one section, the same absolute address

must be specified with the other.

Code sections that have the overlay attribute can be located at an address that
overlaps other overlay code sections. For example:

file1.c:

#pragma code overlay my_overlay_scn=0x1000
void f (void)
{
 ...
}

file2.c:

#pragma code overlay my_overlay_scn=0x1000
void g (void)
{
 ...
}

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 26 © 2005 Microchip Technology Inc.

Data sections that have the overlay attribute can be located at an address that
overlaps other overlay data sections. This feature can be useful for allowing a single
data range to be used for multiple variables that are never active simultaneously. For
example:

file1.c:

#pragma udata overlay my_overlay_data=0x1fc
/* 2 bytes will be located at 0x1fc and 0x1fe */
int int_var1, int_var2;

file2.c:

#pragma udata overlay my_overlay_data=0x1fc
/* 4 bytes will be located at 0x1fc */
long long_var;

For more information on the handling of overlay sections see MPASM™ User’s Guide
with MPLINK™ and MPLIB™ (DS33014).

2.9.1.6 LOCATING CODE

Following a #pragma code directive, all generated code will be assigned to the
specified code section until another #pragma code directive is encountered. An
absolute code section allows the location of code to a specific address. For example:

#pragma code my_code=0x2000

will locate the code section my_code at program memory address 0x2000.

The linker will enforce that code sections be placed in program memory regions
however, a code section can be located in a specified memory region. The SECTION
directive of the linker script is used to assign a section to a specific memory region.
The following linker script directive assigns code section my_code1 to memory region
page1:

SECTION NAME=my_code1 ROM=page1

2.9.1.7 LOCATING DATA

Data can be placed in either data or program memory with the MPLAB C18 compiler.
Data that is placed in on-chip program memory can be read but not written without
additional user-supplied code. Data placed in external program memory can generally
be either read or written without additional user-supplied code.

For example, the following declares a section for statically allocated uninitialized data
(udata) at absolute address 0x120:

#pragma udata my_new_data_section=0x120

The rom keyword tells the compiler that a variable should be placed in program
memory. The compiler will allocate this variable into the current romdata type section.
For example:

#pragma romdata const_table
const rom char my_const_array[10] = {0, 1, 2, 3, 4, 5,
 6, 7, 8, 9};

/* Resume allocation of romdata into the default section */
#pragma romdata

The linker will enforce that romdata sections be placed in program memory regions
and that udata and idata sections be placed in data memory regions however, a data
section can also be located in a specified memory region. The SECTION directive of
the linker script is used to assign a section to a specific memory region. The following
assigns udata section my_data to memory region gpr1:

SECTION NAME=my_data RAM=gpr1

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 27

2.9.2 #pragma interruptlow fname /
#pragma interrupt fname

The interrupt pragma declares a function to be a high-priority interrupt service
routine (ISR); the interruptlow pragma declares a function to be a low-priority
interrupt service routine.

An interrupt suspends the execution of a running application, saves the current context
information and transfers control to an ISR so that the event may be processed. Upon
completion of the ISR, previous context information is restored and normal execution
of the application resumes. The minimal context saved and restored for an interrupt is
WREG, BSR and STATUS. A high-priority interrupt uses the shadow registers to save and
restore the minimal context, while a low-priority interrupt uses the software stack to
save and restore the minimal context. As a consequence, a high-priority interrupt
terminates with a fast “return from interrupt”, while a low-priority interrupt terminates
with a normal “return from interrupt”. Two MOVFF instructions are required for each byte
of context preserved via the software stack except for WREG, which requires a MOVWF
instruction and a MOVF instruction; therefore, in order to preserve the minimal context,
a low-priority interrupt has an additional 10-word overhead beyond the requirements of
a high-priority interrupt.

Interrupt service routines use a temporary data section that is distinct from that used
by normal C functions. Any temporary data required during the evaluation of
expressions in the interrupt service routine is allocated in this section and is not
overlaid with the temporary locations of other functions, including other interrupt
functions. The interrupt pragmas allow the interrupt temporary data section to be
named. If this section is not named, the compiler temporary variables are created in a
udata section named fname_tmp. For example:

void foo(void);
...
#pragma interrupt foo
void foo(void)
{
 /* perform interrupt function here */
}

The compiler temporary variables for interrupt service routine foo will be placed in the
udata section foo_tmp.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 28 © 2005 Microchip Technology Inc.

2.9.2.1 SYNTAX

interrupt-directive:

 # pragma interrupt function-name [tmp-section-name][save=save-list]
| # pragma interruptlow function-name [tmp-section-name][save=save-list]

save-list:

save-specifier
| save-list, save-specifier

save-specifier:

symbol-name
| section("section-name")

function-name: C identifier – names the C function serving as an ISR.

tmp-section-name: C identifier – names the section in which to allocate the ISR’s
temporary data

symbol-name: C identifier – names the variable that will be restored following interrupt
processing

section-name: C identifier with the exception that the first character can be a dot (.)
– names the section that will be restored following interrupt processing

2.9.2.2 INTERRUPT SERVICE ROUTINES

An MPLAB C18 ISR is like any other C function in that it can have local variables
and access global variables; however, an ISR must be declared with no parameters
and no return value since the ISR, in response to a hardware interrupt, is invoked
asynchronously. Global variables that are accessed by both an ISR and mainline
functions should be declared volatile.

ISR’s should only be invoked through a hardware interrupt and not from other C
functions. An ISR uses the return from interrupt (RETFIE) instruction to exit from the
function rather than the normal RETURN instruction. Using a fast RETFIE instruction out
of context can corrupt WREG, BSR and STATUS.

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 29

2.9.2.3 INTERRUPT VECTORS

MPLAB C18 does not automatically place an ISR at the interrupt vector. Commonly, a
GOTO instruction is placed at the interrupt vector for transferring control to the ISR
proper. For example:

#include <p18cxxx.h>

void low_isr(void);
void high_isr(void);

/*
 * For PIC18 devices the low interrupt vector is found at
 * 00000018h. The following code will branch to the
 * low_interrupt_service_routine function to handle
 * interrupts that occur at the low vector.
 */
#pragma code low_vector=0x18
void interrupt_at_low_vector(void)
{
 _asm GOTO low_isr _endasm
}
#pragma code /* return to the default code section */

#pragma interruptlow low_isr
void low_isr (void)
{
 /* ... */
}

/*
 * For PIC18 devices the high interrupt vector is found at
 * 00000008h. The following code will branch to the
 * high_interrupt_service_routine function to handle
 * interrupts that occur at the high vector.
 */
#pragma code high_vector=0x08
void interrupt_at_high_vector(void)
{
 _asm GOTO high_isr _endasm
}
#pragma code /* return to the default code section */

#pragma interrupt high_isr
void high_isr (void)
{
 /* ... */
}

For a complete example, see Chapter 5. “Sample Application”

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 30 © 2005 Microchip Technology Inc.

2.9.2.4 ISR CONTEXT SAVING

MPLAB C18 will preserve a basic context by default (Section 3.4 “Compiler Managed
Resources”), and the save= clause allows additional arbitrary symbols to be saved
and restored by the function.

To save a user-defined global variable named myint, the following pragma directive
would be used:

#pragma interrupt high_interrupt_service_routine save=myint

In addition to variables, entire data sections can also be named in the save= clause.
For example, to save a user-defined section named mydata, the following pragma
directive would be used:

#pragma interrupt high_interrupt_service_routine save=section("mydata")

If an interrupt service routine calls another function, the normal functions’ temporary
data section (which is named .tmpdata) should be saved using a
save=section(".tmpdata") qualifier on the interrupt pragma directive. For
example:

#pragma interrupt high_interrupt_service_routine save=section(".tmpdata")

If the ISR changes any file registers other than the basic context, then they should be
named in the save= clause. The generated code should be examined to determine
which file registers are used and need to be saved.

If an interrupt service routine calls a function that returns 16-bit data, the PROD file
register should be saved using a save=PROD qualifier on the interrupt pragma
directive. For example:

#pragma interruptlow low_interrupt_service_routine save=PROD

If an interrupt service routine uses math library functions or calls a function that
returns 24- or 32-bit data, the math data section (which is named MATH_DATA) should
be saved using a save=section("MATH_DATA") qualifier on the interrupt pragma
directive. For example:

#pragma interrupt high_interrupt_service_routine save=section("MATH_DATA")

All previous examples show a single value being saved. Multiple variables and sections
may be saved using the same save= qualifier. If an interrupt service routine used the
PROD file register, the .tmpdata section, the myint variable, and the mydata section,
these should be saved using the save=PROD, section (".tmpdata"), myint,
section ("mydata") qualifier on the interrupt pragma directive. For example:

#pragma interrupt isr save=PROD, section(".tmpdata"), myint, section("mydata")

Note: If an ISR calls a function that returns a value less than or equal to 32 bits
in size, the locations associated with the return value (see Section 3.2.3
“Return Values”) should be specified in the save= list of the interrupt
pragma.

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 31

2.9.2.5 LATENCY

The time between when an interrupt occurs and when the first ISR instruction is
executed is the latency of the interrupt. The three elements that affect latency are:

1. Processor servicing of interrupt: The amount of time it takes the processor to
recognize the interrupt and branch to the first address of the interrupt vector. To
determine this value refer to the processor data sheet for the specific processor
and interrupt source being used.

2. Interrupt vector execution: The amount of time it takes to execute the code at
the interrupt vector that branches to the ISR.

3. ISR prologue code: The amount of time it takes MPLAB C18 to save the
compiler managed resources and the data in the save= list.

2.9.2.6 NESTING INTERRUPTS

Low-priority interrupts may be nested since active registers are saved onto the software
stack. Only a single instance of a high-priority interrupt service routine may be active at
a time since these ISR’s use the single-level hardware shadow registers.

If nesting of low-priority interrupts is desired, a statement to set the GIEL bit can be
added near the beginning of the ISR. See the processor data sheet for details.

2.9.3 #pragma varlocate bank variable-name
#pragma varlocate "section-name" variable-name

The varlocate pragma tells the compiler where a variable will be located at link time,
enabling the compiler to perform more efficient bank switching.

The varlocate specifications are not enforced by the compiler or linker. The sections
that contain the variables should be assigned to the correct bank explicitly in the linker
script or via absolute sections in the module(s) where they are defined.

2.9.3.1 SYNTAX

variable-locate-directive:

 # pragma varlocate bank variable-name[, variable-name...]
| # pragma varlocate "section-name" variable-name[, variable-name...]

bank: integer constant

variable-name: C identifier

section-name: C identifier

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 32 © 2005 Microchip Technology Inc.

2.9.3.2 EXAMPLE USING # pragma varlocate bank variable-name

In one file, c1 and c2 are explicitly assigned to bank 1.

#pragma udata bank1=0x100
signed char c1;
signed char c2;

In a second file, the compiler is told that both c1 and c2 are located in bank 1.

#pragma varlocate 1 c1
extern signed char c1;

#pragma varlocate 1 c2
extern signed char c2;

void main (void)
{
 c1 += 5;
 /* No MOVLB instruction needs to be generated here. */
 c2 += 5;
}

When c1 and c2 are used in the second file, the compiler knows that both variables
are in the same bank and does not need to generate a second MOVLB instruction when
using c2 immediately after c1.

2.9.3.3 EXAMPLE USING # pragma varlocate "section-name" variable-name

In one file, c3 and c4 are created in the udata section my_section.

#pragma udata my_section
signed char c3;
signed char c4;
#pragma udata

In a second file, the compiler is told that both c3 and c4 are located in the udata
section my_section.

#pragma varlocate "my_section" c3, c4
extern signed char c3;
extern signed char c4;

void main (void)
{
 c3 += 5;
 /* No MOVLB instruction needs to be generated here. */
 c4 += 5;
}

When c3 and c4 are used in the second file, the compiler knows that both variables
are in the same section and does not need to generate a second MOVLB instruction
when using c4 immediately after c3.

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 33

2.9.4 #pragma config

The #pragma config directive specifies the processor-specific configuration settings
(i.e., configuration bits) to be used by the application.

Configuration settings may be specified with multiple #pragma config directives.
MPLAB C18 verifies that the configuration settings specified are valid for the processor
for which it is compiling. If a given setting in the configuration byte has not been spec-
ified in any #pragma config directive, the bits associated with that setting will default
to the unprogrammed value.

For each configuration byte for which a setting is specified with the #pragma config
directive, the compiler generates an absolute romdata section named
.config_address_filename, where address is the hexadecimal representation
of the address of the configuration byte, and filename is the name of the object file
being generated. For example, if a configuration setting was specified for the configu-
ration byte located at address 0x300001 and the source file was compiled with the
command-line option "mcc18 foo.c -fo=foo.o", a romdata section named
.config_300001_foo.o would be created.

2.9.4.1 SYNTAX

pragma-config-directive:
 # pragma config setting-list
setting-list:
 setting
 | setting-list, setting
setting:
 setting-name = value-name

The setting-name and value-name are device specific and can be determined by
utilizing the --help-config command-line option. Additionally, the available settings
and associated values for each device are listed in the PIC18 Configuration Settings
Addendum (DS51537).

2.9.4.2 EXAMPLE

The following example shows how the #pragma config directive might be utilized.
The example does the following:

• Enables the Watchdog Timer,
• Sets the Watchdog Postscaler to 1:128, and
• Selects the HS oscillator

#pragma config WDT = ON, WDTPS = 128

#pragma config OSC = HS

...

void main (void)

{

...

}

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 34 © 2005 Microchip Technology Inc.

2.10 PROCESSOR-SPECIFIC HEADER FILES

The processor-specific header file is a C file that contains external declarations for the
special function registers, which are defined in the register definitions file (see Section
2.11 “Processor-specific Register Definitions Files”). For example, in the
PIC18C452 processor-specific header file, PORTA is declared as:

extern volatile near unsigned char PORTA;

and as:

extern volatile near union {
 struct {
 unsigned RA0:1;
 unsigned RA1:1;
 unsigned RA2:1;
 unsigned RA3:1;
 unsigned RA4:1;
 unsigned RA5:1;
 unsigned RA6:1;
 } ;
 struct {
 unsigned AN0:1;
 unsigned AN1:1;
 unsigned AN2:1;
 unsigned AN3:1;
 unsigned T0CKI:1;
 unsigned SS:1;
 unsigned OSC2:1;
 } ;
 struct {
 unsigned :2;
 unsigned VREFM:1;
 unsigned VREFP:1;
 unsigned :1;
 unsigned AN4:1;
 unsigned CLKOUT:1;
 } ;
 struct {
 unsigned :5;
 unsigned LVDIN:1;
 } ;
} PORTAbits ;

The first declaration specifies that PORTA is a byte (unsigned char). The extern
modifier is needed since the variables are declared in the register definitions file. The
volatile modifier tells the compiler that it cannot assume that PORTA retains values
assigned to it. The near modifier specifies that the port is located in access RAM.

The second declaration specifies that PORTAbits is a union of bit-addressable
anonymous structures (see Section 2.8.1 “Anonymous Structures”). Since individ-
ual bits in a special function register may have more than one function (and hence more
than one name), there are multiple structure definitions inside the union all referring to
the same register. Respective bits in all structure definitions refer to the same bit in the
register. Where a bit has only one function for its position, it is simply padded in other
structure definitions. For example, bits 1 and 2 on PORTA are simply padded in the third
and fourth structures because they only have two names, whereas, bit 6 has four
names and is specified in each of the structures.

Language Specifics

© 2005 Microchip Technology Inc. DS51288F-page 35

Any of the following statements can be written to use the PORTA special function
register:

PORTA = 0x34; /* Assigns the value 0x34 to the port */
PORTAbits.AN0 = 1; /* Sets the AN0 pin high */
PORTAbits.RA0 = 1; /* Sets the RA0 pin high, same as above
 statement */

In addition to register declarations, the processor-specific header file defines inline
assembly macros. These macros represent certain PICmicro MCU instructions that an
application may need to execute from C code. Although, these instructions could be
included as inline assembly instructions, as a convenience they are provided as C
macros (see Table 2-8).

In order to use the processor-specific header file, the header file that pertains to the
device being used should be included (e.g., if using a PIC18C452,
#include <p18c452.h>) in the application source code. The processor-specific
header files are located in the c:\mcc18\h directory, where c:\mcc18 is the directory
where the compiler is installed. Alternatively, #include <p18cxxx.h> will include
the proper processor-specific header file based on the processor selected on the
command line via the -p command-line option.

TABLE 2-8: C MACROS PROVIDED FOR PICmicro MCU INSTRUCTIONS

Instruction Macro(1) Action

Nop() Executes a no operation (NOP)

ClrWdt() Clears the Watchdog Timer (CLRWDT)

Sleep() Executes a SLEEP instruction

Reset() Executes a device reset (RESET)

Rlcf(var, dest, access)(2,3) Rotates var to the left through the carry bit

Rlncf(var, dest, access)(2,3) Rotates var to the left without going through the
carry bit

Rrcf(var, dest, access)(2,3) Rotates var to the right through the carry bit

Rrncf(var, dest, access)(2,3) Rotates var to the right without going through the
carry bit

Swapf(var, dest, access)(2,3) Swaps the upper and lower nibble of var

Note 1: Using any of these macros in a function affects the ability of the MPLAB C18
compiler to perform optimizations on that function.

2: var must be an 8-bit quantity (i.e., char) and not located on the stack.
3: If dest is 0, the result is stored in WREG, and if dest is 1, the result is stored in var.

If access is 0, the access bank will be selected, overriding the BSR value. If
access is 1, then the bank will be selected as per the BSR value.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 36 © 2005 Microchip Technology Inc.

2.11 PROCESSOR-SPECIFIC REGISTER DEFINITIONS FILES

The processor-specific register definitions file is an assembly file that contains
definitions for all the special function registers on a given device. The processor-
specific register definitions file, when compiled, will become an object file that will need
to be linked with the application (e.g., p18c452.asm compiles to p18c452.o). This
object file is contained in p18xxxx.lib (e.g., p18c452.o is contained in
p18c452.lib).

The source code for the processor-specific register definitions files is found in both the
c:\mcc18\src\traditional\proc and c:\mcc18\src\extended\proc
directories. Compiled object code is found in the c:\mcc18\lib directory, where
c:\mcc18 is the directory where the compiler is installed.

For example, PORTA is defined in the PIC18C452 processor-specific register
definitions file as:

SFR_UNBANKED0 UDATA_ACS H'f80'
PORTA
PORTAbits RES 1 ; 0xf80

The first line specifies the file register bank where PORTA is located and the starting
address for that bank. PORTA has two labels, PORTAbits and PORTA, both referring to
the same location (in this case 0xf80).

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 37

Chapter 3. Run-time Model

This section discusses the run-time model or the set of assumptions that the MPLAB
C18 compiler operates, including information about how the MPLAB C18 compiler uses
the resources of the PIC18 PICmicro microcontrollers.

3.1 MEMORY MODELS

MPLAB C18 provides full library support for both a small and a large memory model
(see Table 3-1). The small memory model is selected using the -ms command-line
option and the large memory model using the -ml option. If neither is provided, the
small memory model is used by default.

TABLE 3-1: MEMORY MODEL SUMMARY

The difference between the small and large models is the size of pointers that point to
program memory. In the small memory model, both function and data pointers that
point to program memory use 16 bits. This has the effect of restricting pointers to
addressing only the first 64k of program memory in the small model. In the large
memory model, 24 bits are used. Applications using more than 64k of program memory
must use the large memory model.

The memory model setting can be overridden on a case-by-case basis by using the
near or far qualifier when declaring a pointer into program space. Pointers to near
memory use 16 bits as in the small memory model, and pointers to far memory use
24 bits as in the large memory model.

The following example creates a pointer to program memory that can address up to
and beyond 64k of program memory space, even when the small memory model is
being used1:

far rom *pgm_ptr;

The following example creates a function pointer that can address up to and beyond
64k of program memory space, even when the small memory model is being used2:

far rom void (*fp) (void);

If the same memory model is not used for all files in a project, all global pointers to
program memory should be declared with explicit near or far qualifiers so that they
are accessed correctly in all modules. The pre-compiled libraries distributed with
MPLAB C18 can be used with either the small or large memory models.

Memory Model
Command-line

Switch
Default ROM

Range Qualifier
Size of Pointers to

Program Space

small -ms near 16 bits

large -ml far 24 bits

1. Following the use of a far data pointer in a small memory model program, the TBLPTRU byte must be
cleared by the user. MPLAB C18 does not clear this byte.

2. Following the use of a far function pointer in a small memory model program, the PCLATU byte must be
cleared by the user. MPLAB C18 does not clear this byte.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 38 © 2005 Microchip Technology Inc.

3.2 CALLING CONVENTIONS

The MPLAB C18 software stack is an upward growing stack data structure on which
the compiler places function arguments and local variables that have the storage class
auto. The software stack is distinct from the hardware stack upon which the PICmicro
microcontroller places function call return addresses. Figure 3-1 shows an example of
the software stack.

FIGURE 3-1: EXAMPLE OF SOFTWARE STACK

The stack pointer (FSR1) always points to the next available stack location. MPLAB
C18 uses FSR2 as the frame pointer, providing quick access to local variables and
parameters. When a function is invoked, its stack-based arguments are pushed onto
the stack in right-to-left order and the function is called. The leftmost function argument
is on the top of the software stack upon entry into the function. Figure 3-2 shows the
software stack immediately prior to a function call.

FIGURE 3-2: EXAMPLE OF SOFTWARE STACK IMMEDIATELY PRIOR TO
FUNCTION CALL

3.2.1 Non-extended Mode Convention

For the Non-extended mode, the frame pointer references the location on the stack that
separates the stack-based arguments from the stack-based local variables.
Stack-based arguments are located at negative offsets from the frame pointer, and
stack based local variables are located at positive offsets from the frame pointer. Imme-
diately upon entry into a C function, the called function pushes the value of FSR2 onto
the stack and copies the value of FSR1 into FSR2, thereby saving the context of the
calling function and initializing the frame pointer of the current function. Then the total
size of stack-based local variables for the function is added to the stack pointer, allo-
cating stack space for those variables. References to stack-based local variables and
stack-based arguments are resolved according to offsets from the frame pointer.
Figure 3-3 shows a software stack following a call to a C function in Non-extended
mode.

Unused Location

Function Context
(Local Variables and

Parameters)

FSR1 (Stack Pointer)

FSR2 (Frame Pointer)
Increasing
Addresses

Unused Location

Function Parameter 1

FSR1 (Stack Pointer)

FSR2 (Frame Pointer)In
cr

ea
si

ng
 A

dd
re

ss
es

Function Parameter 2

...

Function Parameter n

Function Context

Run-time Model

© 2005 Microchip Technology Inc. DS51288F-page 39

FIGURE 3-3: EXAMPLE OF SOFTWARE STACK FOLLOWING A
C FUNCTION CALL IN NON-EXTENDED MODE

3.2.2 Extended Mode Convention

For the Extended mode, the frame pointer references the low byte of the rightmost
named parameter of the function. Both local variables and parameters are located at a
non-negative offset from the frame pointer, allowing the compiler to access them via
indexed with literal offset addressing. Upon entry to the called function, the value of
FSR2 is saved to the stack, the value of FSR1 is copied to FSR2, and the size of the
named parameters plus the size of the saved frame pointer is subtracted from FSR2.
This saves the calling function’s frame pointer and initializes the current function’s
frame pointer. Then, the total size of the local variables for the function is added to
FSR1, allocating space for those locals. Figure 3-4 shows a software stack following a
call to a C function in Extended mode.

Local Variable n

FSR1 (Stack Pointer)

FSR2 (Frame Pointer)
In

cr
ea

si
ng

 A
dd

re
ss

es

...

Local Variable 2

Local Variable 1

Caller Function’s Context

Called Function Parameter n

Previous Frame Pointer

Called Function Parameter 1

Called Function Parameter 2

...

Unused Location

Called Function Variable Length
Parameters

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 40 © 2005 Microchip Technology Inc.

FIGURE 3-4: EXAMPLE OF SOFTWARE STACK IMMEDIATELY
FOLLOWING A C FUNCTION CALL IN EXTENDED MODE

3.2.3 Return Values

The location of the return value is dependent on the size of the return value. Table 3-2
details the location of the return value based on its size.

TABLE 3-2: RETURN VALUES

Note 1: Locations reserved for use by the compiler.

Return Value Size Return Value Location

8 bits WREG

16 bits PRODH:PRODL

24 bits [Non-extended mode] (AARGB2+2):(AARGB2+1):AARGB21

[Extended mode] __RETVAL2:__RETVAL1:__RETVAL01

32 bits [Non-extended mode] (AARGB3+3):(AARGB3+2):(AARGB3+1):AARGB31

[Extended mode] __RETVAL3:__RETVAL2:__RETVAL1:__RETVAL01

> 32 bits On the stack, and FSR0 points to the return value

Local Variable n

FSR1 (Stack Pointer)

FSR2 (Frame Pointer)

In
cr

ea
si

ng
 A

dd
re

ss
es

...

Local Variable 2

Local Variable 1

Caller Function’s Context

Called Function Parameter n

Previous Frame Pointer

Called Function Parameter 1

...

Unused Location

Called Function Variable Length
Parameters

Run-time Model

© 2005 Microchip Technology Inc. DS51288F-page 41

3.2.4 Managing the Software Stack

The stack is sized and placed via the linker script with the STACK directive. The STACK
directive has two arguments: SIZE and RAM to control the allocated stack size and its
location, respectively. For example, to allocate a 128 byte stack and place that stack in
the memory region gpr3:

STACK SIZE=0x80 RAM=gpr3

MPLAB C18 supports stack sizes greater than 256 bytes. The default linker scripts
allocate one memory region per bank of memory, so to allocate a stack larger than 256
bytes requires combining two or more memory regions, as the stack section cannot
cross memory region boundaries. For example, the default linker script for the
PIC18C452 contains the definitions:

DATABANK NAME=gpr4 START=0x400 END=0x4ff
DATABANK NAME=gpr5 START=0x500 END=0x5ff
...
STACK SIZE=0x100 RAM=gpr5

To allocate a 512 byte stack in banks 4 and 5, these definitions should be replaced with:

DATABANK NAME=stackregion START=0x400 END=0x5ff PROTECTED
STACK SIZE=0x200 RAM=stackregion

If a stack larger than 256 bytes is used, the -ls option must be given to the compiler.
There is a slight performance penalty that is incurred when using a large stack, as both
bytes of the frame pointer (FSR2L and FSR2H) must be incremented/decremented
when doing a push/pop, rather than just the low-byte.

The size of the software stack required by an application varies with the complexity of
the program. When nesting function calls, all auto parameters and variables of the
calling function will remain on the stack. Therefore, the stack must be large enough to
accommodate the requirements by all functions in a call tree.

MPLAB C18 supports parameters and local variables allocated either on the software
stack or directly from global memory. The static keyword places a local variable or
a function parameter in global memory instead of on the software stack.1 In general,
stack-based local variables and function parameters require more code to access than
static local variables and function parameters (see Section 2.3.2 “static
Function Arguments”). Functions that use stack-based variables are more flexible in
that they can be reentrant and/or recursive.

3.2.5 Mixing C and Assembly

3.2.5.1 CALLING C FUNCTIONS FROM ASSEMBLY

When calling C functions from assembly:

• C functions are inherently global, unless defined as static.
• The C function name must be declared as an extern symbol in the assembly file.
• A CALL or an RCALL must be used to make the function call.

1. static parameters are valid only when the compiler is operating in Non-extended mode
(see Section 1.2.5 “Selecting the Mode”).

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 42 © 2005 Microchip Technology Inc.

3.2.5.1.1 auto Parameters

auto parameters are pushed onto the software stack from right to left. For multi-byte
data, the low byte is pushed onto the software stack first.

EXAMPLE 3-1:

Given the following prototype for a C function:

char add (auto char x, auto char y);

to call the function add with values x = 0x61 and y = 0x65, the value for y must be
pushed onto the software stack followed by the value of x. The return value, since it is
8 bits, will be returned in WREG (see Table 3-2), i.e.,

 EXTERN add ; defined in C module
...
MOVLW 0x65
MOVWF POSTINC1 ; y = 0x65 pushed onto stack
MOVLW 0x61
MOVWF POSTINC1 ; x = 0x61 pushed onto stack
CALL add
MOVWF result ; result is returned in WREG
...

EXAMPLE 3-2:

Given the following prototype for a C function:

int sub (auto int x, auto int y);

to call the function sub with values x = 0x7861 and y = 0x1265, the value for y
must be pushed onto the software stack followed by the value of x. The return value,
since it is 16 bits, will be returned in PRODH:PRODL (see Table 3-2), i.e.,

 EXTERN sub ; defined in C module
...
MOVLW 0x65
MOVWF POSTINC1
MOVLW 0x12
MOVWF POSTINC1 ; y = 0x1265 pushed onto stack
MOVLW 0x61
MOVWF POSTINC1
MOVLW 0x78
MOVWF POSTINC1 ; x = 0x7861 pushed onto stack
CALL sub
MOVFF PRODL, result
MOVFF PRODH, result+1 ; result is returned in PRODH:PRODL
...

Run-time Model

© 2005 Microchip Technology Inc. DS51288F-page 43

3.2.5.1.2 static Parameters

static parameters are allocated globally, enabling direct access. static parameters
are valid only when the compiler is operating in Non-extended mode (see Section
1.2.5 “Selecting the Mode”). The naming convention for static parameters is
__function_name:n, where function_name is replaced by the name of the
function and n is the parameter position, with numbering starting from 0. For example,
given the following prototype for a C function:

char add (static char x, static char y);

the value for y is accessed by using __add:1, and the value of x is accessed by using
__add:0.

3.2.5.2 CALLING ASSEMBLY FUNCTIONS FROM C

When calling assembly functions from C:

• The function label must be declared as global in the ASM module.
• The function must be declared as extern in the C module.
• If case sensitivity is disabled for the ASM module, the function must be declared

as ALL CAPS in the C module.
• The function must maintain the MPLAB C18 compiler’s run-time model

(e.g., return values must be returned in the locations specified in Table 3-2).
• The function is called from C using standard C function notation.

EXAMPLE 3-3:

Given the following function written in assembly:

 UDATA_ACS
delay_temp RES 1

 CODE
asm_delay
 SETF delay_temp
not_done
 DECF delay_temp
 BNZ not_done
done
 RETURN

 GLOBAL asm_delay ; export so linker can see it
 END

to call the function asm_delay from a C source file, an external prototype for the
assembly function must be added, and the function called using standard C function
notation:

/* asm_delay is found in an assembly file */
extern void asm_delay (void);

void main (void)
{
 asm_delay ();
}

Note: Since ‘:’ is not a valid character in the MPASM assembler’s labels,
accessing static parameters in assembly functions is not supported.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 44 © 2005 Microchip Technology Inc.

EXAMPLE 3-4:

Given the following function written in assembly,

 INCLUDE "p18c452.inc"

 CODE
asm_timed_delay
not_done
 ; Figure 3-2 is what the stack looks like upon
 ; entry to this function.
 ;
 ; ‘time’ is passed on the stack and must be >= 0
 MOVLW 0xff
 DECF PLUSW1, 0x1, 0x0
 BNZ not_done
done
 RETURN
 ; export so linker can see it
 GLOBAL asm_timed_delay
 END

to call the function asm_timed_delay from a C source file, an external prototype for
the assembly function must be added, and the function called using standard C
function notation:

/* asm_timed_delay is found in an assembly file */
extern void asm_timed_delay (unsigned char);

void main (void)
{
 asm_timed_delay (0x80);
}

3.2.5.3 USING C VARIABLES IN ASSEMBLY

When using C variables in assembly:

• The C variable must have global scope in the C source file.
• The C variable must be declared as an extern symbol in the assembly file.

Run-time Model

© 2005 Microchip Technology Inc. DS51288F-page 45

EXAMPLE 3-5:

Given the following written in C:

unsigned int c_variable;

void main (void)
{
 ...
}

to modify the variable c_variable from assembly, an external declaration must be
added for the variable in the assembly source file:

 EXTERN c_variable ; defined in C module
MYCODE CODE
asm_function
 MOVLW 0xff
 ; put 0xffff in the C declared variable
 MOVWF c_variable
 MOVWF c_variable+1
done
 RETURN

 ; export so linker can see it
 GLOBAL asm_function
 END

3.2.5.4 USING ASSEMBLY VARIABLES IN C

When using assembly variables in C:

• The variable must be declared as global in the ASM module.
• The variable must be declared as extern in the C module.
• If case sensitivity is disabled for the ASM module, the variable must be declared

as ALL CAPS in the C module.

EXAMPLE 3-6:

Given the following written in assembly,

MYDATA UDATA
asm_variable RES 2 ; 2 byte variable

 ; export so linker can see it
 GLOBAL asm_variable
 END

to change the variable asm_variable from a C source file, an external declaration
must be added for the variable in the C source file. The variable can be used as if it
were a C variable:

extern unsigned int asm_variable;

void change_asm_variable (void)
{
 asm_variable = 0x1234;
}

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 46 © 2005 Microchip Technology Inc.

3.3 STARTUP CODE

3.3.1 Default Behavior

The MPLAB C18 startup begins at the reset vector (address 0). The reset vector
jumps to a function that initializes FSR1 and FSR2 to reference the software stack,
optionally calls a function to initialize idata sections (data memory initialized data)
from program memory, and loops on a call to the application’s main() function.

Whether the startup code initializes idata sections is determined by which startup
code module is linked with the application. The c018i.o and c018i_e.o modules
perform the initialization, while the c018.o and c018_e.o modules do not. The
default linker scripts provided by MPLAB C18 link with either the c018i.o or
c018i_e.o module depending on whether Non-extended mode or Extended mode is
being utilized, respectively.

The ANSI standard requires that all objects with static storage duration that are not
initialized explicitly are set to zero. With both the c018.o/c018_e.o and
c018i.o/c018i_e.o startup code modules, this requirement is not met. A third type
of startup module, c018iz.o and c018iz_e.o, is provided to meet this requirement.
If this startup code module is linked with the application, then, in addition to initializing
idata sections, all objects with static storage duration that are not initialized explicitly
are set to zero.

To perform initialization of data memory, the MPLINK linker creates a copy of initialized
data memory in program memory that the startup code copies to data memory. The
.cinit section is populated by the MPLINK linker to describe where the program
memory images should be copied. Table 3-3 describes the format of the .cinit
section.

TABLE 3-3: FORMAT OF .cinit

After the startup code sets up the stack and optionally copies initialized data, it calls the
main() function of the C program. There are no arguments passed to main().
MPLAB C18 transfers control to main() via a looped call, i.e.:

loop:
 // Call the user's main routine
 main();
goto loop;

Field Description Size

num_init Number of sections 16 bit

from_addr_0 Program memory start address of section 0 32 bit

to_addr_0 Data memory start address of section 0 32 bit

size_0 Number of data memory bytes to initialize for section 0 32 bit

...

from_addr_n(1) Program memory start address of section n(1) 32 bit

to_addr_n(1) Data memory start address of section n(1) 32 bit

size_n(1) Number of data memory bytes to initialize for section n(1) 32 bit

Note 1: n = num_init - 1

Run-time Model

© 2005 Microchip Technology Inc. DS51288F-page 47

3.3.2 Customization

To execute application-specific code immediately after a device reset but before any
other code generated by the compiler is executed, edit the desired startup file and add
the code to the beginning of the _entry() function.

To customize the startup files if using Non-extended mode:

1. Go to the c:\mcc18\src\traditional\startup directory, where
c:\mcc18 is the directory where the compiler is installed.

2. Edit either c018.c, c018i.c or c018iz.c to add any customized startup code
desired.

3. Compile the updated startup file to generate either c018.o, c018i.o or
c018iz.o.

4. Copy the startup module to c:\mcc18\lib, where c:\mcc18 is the directory
where the compiler is installed.

To customize the startup files if using Extended mode:

1. Go to the c:\mcc18\src\extended\startup directory, where c:\mcc18 is
the directory where the compiler is installed.

2. Edit either c018_e.c, c018i_e.c or c018iz_e.c to add any customized
startup code desired.

3. Compile the updated startup file to generate either c018_e.o, c018i_e.o or
c018iz_e.o.

4. Copy the startup module to c:\mcc18\lib, where C:\mcc18 is the directory
where the compiler is installed.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 48 © 2005 Microchip Technology Inc.

3.4 COMPILER MANAGED RESOURCES

Certain special function registers and data sections of the PIC18 PICmicro
microcontrollers are used by MPLAB C18 and are not available for general purpose
user code. Table 3-4 indicates each of these resources, their primary use by the
compiler, and whether the compiler automatically saves the resource when entering an
ISR.

TABLE 3-4: COMPILER RESERVED RESOURCES

Compiler-managed
Resource

Primary Use(s)
Automatically

Saved

PC Execution control

WREG Intermediate calculations

STATUS Calculation results

BSR Bank selection

PROD Multiplication results, return values,
intermediate calculations

section.tmpdata Intermediate calculations

FSR0 Pointers to RAM

FSR1 Stack pointer

FSR2 Frame pointer

TBLPTR Accessing values in program memory

TABLAT Accessing values in program memory

PCLATH Function pointer invocation

PCLATU Function pointer invocation

section MATH_DATA Arguments, return values and temporary
locations for math library functions

Note: Compiler temporary variables are placed in a udata section named .tmpdata.
Interrupt service routines each create a separate section for temporary data
storage (see Section 2.9.2 “#pragma interruptlow fname / #pragma
interrupt fname”).

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 49

Chapter 4. Optimizations

The MPLAB C18 compiler is an optimizing compiler. It performs optimizations that are
primarily intended to reduce code size. All of the optimizations that can be performed
by the MPLAB C18 compiler are enabled by default, but can be completely disabled
using the -O- command-line option. The MPLAB C18 compiler also allows
optimizations to be enabled or disabled on a case-by-case basis. Table 4-1 outlines
each of the optimizations that can be performed by the MPLAB C18 compiler, including
the command-line option to enable or disable it, whether or not it affects debugging,
and the section where it is discussed.

TABLE 4-1: MPLAB C18 Optimizations

4.1 DUPLICATE STRING MERGING

Duplicate string merging, when enabled, will take two or more identical literal strings
and combine them into a single string table entry with a single instance of the raw data
stored in program memory. For example, given the following, when duplicate string
merging is enabled (-Om+), only a single instance of the data for the string “foo” would
be stored in the output object file, and both a and b would reference this data.

const rom char *a = "foo";
const rom char *b = "foo";

The -Om- command-line option disables duplicate string merging.

Duplicate string merging should not affect the ability to debug source code.

Note: Optimizations will not occur on any function containing inline assembly
code.

Optimization To Enable To Disable
Affects

Debugging
Section

Duplicate String Merging -Om+ -Om- 4.1

Branches -Ob+ -Ob- 4.2

Banking -On+ -On- 4.3

WREG Content Tracking -Ow+ -Ow- 4.4

Code Straightening -Os+ -Os- 4.5

Tail Merging -Ot+ -Ot- 4.6

Unreachable Code Removal -Ou+ -Ou- 4.7

Copy Propagation -Op+ -Op- 4.8

Redundant Store Removal -Or+ -Or- 4.9

Dead Code Removal -Od+ -Od- 4.10

Procedural Abstraction -Opa+ -Opa- 4.11

-Om+ / -Om-

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 50 © 2005 Microchip Technology Inc.

4.2 BRANCHES

The following branch optimizations are performed by the MPLAB C18 compiler when
the -Ob+ command-line option is specified:

1. A branch (conditional or unconditional) to an unconditional branch can be
modified to target the latter’s target instead.

2. An unconditional branch to a RETURN, ADDULNK or SUBULNK instruction can be
replaced by a RETURN, ADDULNK or SUBULNK instruction, respectively.

3. A branch (conditional or unconditional) to the instruction immediately following
the branch can be removed.

4. A conditional branch to a conditional branch can be modified to target the latter’s
target if both branches branch on the same condition.

5. A conditional branch immediately followed by an unconditional branch to the
same destination can be removed (i.e., the unconditional branch is sufficient).

The -Ob- command-line option disables branch optimizations.

Some of the branch optimizations save program space, while others may expose
unreachable code, which can be removed by Unreachable Code Removal (see
Section 4.7 “Unreachable Code Removal”). Branch optimization should not affect
the ability to debug source code.

4.3 BANKING

Banking optimization removes MOVLB instruction in instances where it can be
determined that the Bank Select register already contains the correct value. For
example, given the following C source code fragment:

unsigned char a, b;
a = 5;
b = 5;

If compiled with banking optimization disabled (-On-), MPLAB C18 will load the Bank
register prior to each assignment:

0x000000 MOVLB a
0x000002 MOVLW 0x5
0x000004 MOVWF a,0x1
0x000006 MOVLB b
0x000008 MOVWF b,0x1

When this same code is compiled with banking optimization enabled (-On+), MPLAB
C18 may be able to eliminate the second MOVLB instruction by determining that the
value of the Bank register will not change:

0x000000 MOVLB a
0x000002 MOVLW 0x5
0x000004 MOVWF a,0x1
0x000006 MOVWF b,0x1

The banking optimization should not affect the ability to debug source code.

-Ob+ / -Ob-

-On+ / -On-

Optimizations

© 2005 Microchip Technology Inc. DS51288F-page 51

4.4 WREG CONTENT TRACKING

WREG content tracking removes MOVLW instructions in instances where it can be
determined that the Working register already contains the correct value. For example,
given the following C source code fragment:

unsigned char a, b;
a = 5;
b = 5;

If compiled with WREG content tracking disabled (-Ow-), MPLAB C18 will load a value
of 5 into the Working register prior to each assignment:

0x000000 MOVLW 0x5
0x000002 MOVWF a,0x1
0x000004 MOVLW 0x5
0x000006 MOVWF b,0x1

When this same code is compiled with WREG tracking enabled (-Ow+), MPLAB C18
may be able to eliminate the second MOVLW instruction by determining that the value of
WREG must already be 5 at this point:

0x000000 MOVLW 0x5
0x000002 MOVWF a,0x1
0x000004 MOVWF b,0x1

WREG content tracking should not affect the ability to debug source code.

4.5 CODE STRAIGHTENING

Code straightening attempts to reorder code sequences so that they appear in the
order in which they will be executed. This can move or remove branching instructions
so that code may be smaller and more efficient. An example where this may occur in
C is:

first:
 sub1();
 goto second;
third:
 sub3();
 goto fourth;
second:
 sub2();
 goto third;
fourth:
 sub4();

In this example, the function calls will occur in numerical order, namely: sub1, sub2,
sub3 and then sub4. With code straightening disabled (-Os-), the original flow of the
code is mirrored in the generated assembly code:

0x000000 first CALL sub1,0x0
0x000002
0x000004 BRA second
0x000006 third CALL sub3,0x0
0x000008
0x00000a BRA fourth
0x00000c second CALL sub2,0x0
0x00000e
0x000010 BRA third
0x000012 fourth CALL sub4,0x0
0x000014

-Ow+ / -Ow-

-Os+ / -Os-

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 52 © 2005 Microchip Technology Inc.

With code straightening enabled (-Os+), the code is reordered sequentially, removing
the branching instructions:

0x000000 first CALL sub1,0x0
0x000002
0x000004 second CALL sub2,0x0
0x000006
0x000008 third CALL sub3,0x0
0x00000a
0x00000c fourth CALL sub4,0x0
0x00000e

Code straightening should not affect the ability to debug source code.

4.6 TAIL MERGING

Tail merging attempts to combine multiple sequences of identical instructions into a
single sequence. For example, given the following C source code fragment:

if (user_value)
 PORTB = 0x55;
else
 PORTB = 0x80

When compiled with tail merging disabled (-Ot-), a MOVWF PORTB,0x0 is generated
in both cases of the if statement:

0x000000 MOVF user_value,0x0,0x0
0x000002 BZ 0xa
0x000004 MOVLW 0x55
0x000006 MOVWF PORTB,0x0
0x000008 BRA 0xe
0x00000a MOVLW 0x80
0x00000c MOVWF PORTB,0x0
0x00000e RETURN 0x0

However, when compiled with tail merging enabled (-Ot+), only a single
MOVWF PORTB,0x0 is generated and is used by both the if and else portions of the
code:

0x000000 MOVF user_value,0x0,0x0
0x000002 BZ 0x8
0x000004 MOVLW 0x55
0x000006 BRA 0xa
0x000008 MOVLW 0x80
0x00000a MOVWF PORTB,0x0
0x00000c RETURN 0x0

When debugging source code compiled with this optimization enabled, the incorrect
source line may be highlighted because two or more source lines may share a single
sequence of assembly code, making it difficult for the debugger to identify which source
line is being executed.

-Ot+ / -Ot-

Optimizations

© 2005 Microchip Technology Inc. DS51288F-page 53

4.7 UNREACHABLE CODE REMOVAL

Unreachable code will attempt to remove any code that can be provably demonstrated
to not execute during normal program flow. An example where this may occur in C is:

if (1)
{
 x = 5;
}
else
{
 x = 6;
}

In this code it is obvious that the else portion of this code snippet can never be
reached. With unreachable code disabled (-Ou-), the generated assembly code will
include the instructions necessary to move 6 to x and the instruction to branch around
these instructions:

0x000000 MOVLB x
0x000002 MOVLW 0x5
0x000004 BRA 0xa
0x000006 MOVLB x
0x000008 MOVLW 0x6
0x00000a MOVWF x,0x1

With unreachable code enabled (-Ou+), the generated assembly code will not include
the instructions for the else:

0x000000 MOVLB x
0x000002 MOVLW 0x5
0x000004 MOVWF x,0x1

The unreachable code optimization may affect the ability to set breakpoints on certain
lines of C source code.

4.8 COPY PROPAGATION

Copy propagation is a transformation that, given an assignment x ← y for some
variables x and y, replaces later uses of x with uses of y, as long as intervening
instructions have not changed the value of either x or y. This optimization by itself does
not save any instructions, but enables dead code removal (see Section 4.10 “Dead
Code Removal”). An example where this may occur in C is:

char c;
void foo (char a)
{
 char b;
 b = a;
 c = b;
}

With copy propagation disabled (-Op-), the original code is mirrored in the generated
assembly code:

0x000000 foo MOVFF a,b
0x000002
0x000004 MOVFF b,c
0x000006
0x000008 RETURN 0x0

-Ou+ / -Ou-

 -Op+ / -Op-

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 54 © 2005 Microchip Technology Inc.

With copy propagation enabled (-Op+), instead of b being moved to c for the second
instruction, a is moved to c:

0x000000 foo MOVFF a,b
0x000002
0x000004 MOVFF a,c
0x000006
0x000008 RETURN 0x0

Dead code removal would then delete the useless assignment of a to b (see Section
4.10 “Dead Code Removal”).

Copy propagation may affect the ability to debug source code.

4.9 REDUNDANT STORE REMOVAL

When assignment of the form x ← y appears multiple times in an instruction sequence
and the intervening code has not changed the value of x or y, the second assignment
may be removed. This is a special case of common subexpression elimination. An
example where this may occur in C is:

char c;
void foo (char a)
{
 c = a;
 c = a;
}

With redundant store removal disabled (-Or-), the original code is mirrored in the
generated assembly code:

0x000000 foo MOVFF a,c
0x000002
0x000004 MOVFF a,c
0x000006
0x000008 RETURN 0x0

With redundant store removal enabled (-Or+), the second assignment of c to a is not
required:

0x000000 foo MOVFF a,c
0x000002
0x000004 RETURN 0x0

Redundant store removal may affect the ability to set breakpoints on certain lines of C
source code.

-Or+ / -Or-

Optimizations

© 2005 Microchip Technology Inc. DS51288F-page 55

4.10 DEAD CODE REMOVAL

Values computed in a function which are not used on any path to the function’s exit are
considered dead. Instructions which compute only dead values are themselves
considered dead. Values stored to locations visible outside the scope of the function
are considered used (and therefore not dead), since it is not determinable whether the
value is used or not. Using the same example as that shown in Section 4.8 “Copy
Propagation”:

char c;
void foo (char a)
{

char b;
b = a;
c = b;

}

With copy propagation enabled (-Op+) and dead code removal disabled (-Od-), the
generated assembly code is that shown in Section 4.8 “Copy Propagation”:

0x000000 foo MOVFF a,b
0x000002
0x000004 MOVFF a,c
0x000006
0x000008 RETURN 0x0

With copy propagation enabled (-Op+) and dead code removal enabled (-Od+),
instead of b being moved to c for the second instruction, a is moved to c thus making
the assignment to b dead and able to be removed:

0x000000 foo MOVFF a,c
0x000002
0x000004 RETURN 0x0

The dead code removal optimization may affect the ability to set breakpoints on certain
lines of C source code.

4.11 PROCEDURAL ABSTRACTION

MPLAB C18, like most compilers, frequently generates code sequences that appear
multiple times in a single object file. This optimization reduces the size of the generated
code by creating a procedure containing the repeated code and replacing the copies
with a call to the procedure. Procedural abstraction is performed across all functions in
a given code section.1

For example, given the following C source code fragment:

distance -= time * speed;
position += time * speed;

-Od+ / -Od-

-Opa+ / -Opa-

1. When the time limit for the demo version expires, procedural abstraction will not be performed.

Note: Procedural abstraction generates a savings in program space at the
potential expense of execution time.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 56 © 2005 Microchip Technology Inc.

When compiled with procedural abstraction disabled (-Opa-), the code sequence
generated for time * speed is generated for each instruction listed above. It is shown
in bold below.

0x000000 main MOVLB time
0x000002 MOVF time,0x0,0x1
0x000004 MULWF speed,0x1
0x000006 MOVF PRODL,0x0,0x0
0x000008 MOVWF PRODL,0x0
0x00000a CLRF PRODL+1,0x0
0x00000c MOVF WREG,0x0,0x0
0x00000e SUBWF distance,0x1,0x1
0x000010 MOVF PRODL+1,0x0,0x0
0x000012 SUBWFB distance+1,0x1,0x1
0x000014 MOVF time,0x0,0x1
0x000016 MULWF speed,0x1
0x000018 MOVF PRODL,0x0,0x0
0x00001a MOVWF PRODL,0x0
0x00001c CLRF PRODL+1,0x0
0x00001e MOVF WREG,0x0,0x0
0x000020 ADDWF position,0x1,0x1
0x000022 MOVF PRODL+1,0x0,0x0
0x000024 ADDWFC position+1,0x1,0x1
0x000026 RETURN 0x0

Whereas, when compiled with procedural abstraction enabled (-Opa+), these two code
sequences are abstracted into a procedure and the repeated code is replaced by a call
to the procedure.

0x000000 main MOVLB time
0x000002 CALL _pa_0,0x0
0x000004
0x000006 SUBWF distance,0x1,0x1
0x000008 MOVF PRODL+1,0x0,0x0
0x00000a SUBWFB distance+1,0x1,0x1
0x00000c CALL _pa_0,0x0
0x00000e
0x000010 ADDWF position,0x1,0x1
0x000012 MOVF PRODL+1,0x0,0x0
0x000014 ADDWFC position+1,0x1,0x1
0x000016 RETURN 0x0
0x000018 __pa_0 MOVF time,0x0,0x1
0x00001a MULWF speed,0x1
0x00001c MOVF PRODL,0x0,0x0
0x00001e MOVWF PRODL,0x0
0x000020 CLRF PRODL+1,0x0
0x000022 MOVF WREG,0x0,0x0
0x000024 RETURN 0x0

Not all matches are able to be abstracted in a single pass of procedural abstraction.
Procedural abstraction is performed until no more abstractions occur or a maximum of
four passes. The number of passes can be controlled via the -pa=n command-line
option. Procedural abstraction can potentially add an additional 2n - 1 levels of function
calls, where n is the total number of passes. If the hardware stack is a limited resource
in an application, the -pa=n command-line option can be used to adjust the number of
times procedural abstraction is performed.

When debugging source code compiled with this optimization enabled, the incorrect
source line may be highlighted because two or more source lines may share a single
sequence of assembly code, making it difficult for the debugger to identify which source
line is being executed.

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 57

Chapter 5. Sample Application

The following sample application will flash LEDs connected to PORTB of a PIC18C452
microcontroller. The command line used to build this application is:

mcc18 -p 18c452 -I c:\mcc18\h leds.c

where c:\mcc18 is the directory in which the compiler is installed. This sample
application was designed for use with a PICDEM™ 2 demo board. This sample covers
the following items:

1. Interrupt handling (#pragma interruptlow, interrupt vectors, interrupt
service routines and context saving)

2. System header files
3. Processor-specific header files
4. #pragma sectiontype

5. Inline assembly

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 58 © 2005 Microchip Technology Inc.

/* 1 */ #include <p18cxxx.h>
/* 2 */ #include <timers.h>
/* 3 */
/* 4 */ #define NUMBER_OF_LEDS 8
/* 5 */
/* 6 */ void timer_isr (void);
/* 7 */
/* 8 */ static unsigned char s_count = 0;
/* 9 */
/* 10 */ #pragma code low_vector=0x18
/* 11 */ void low_interrupt (void)
/* 12 */ {
/* 13 */ _asm GOTO timer_isr _endasm
/* 14 */ }
/* 15 */
/* 16 */ #pragma code
/* 17 */
/* 18 */ #pragma interruptlow timer_isr save=PROD
/* 19 */ void
/* 20 */ timer_isr (void)
/* 21 */ {
/* 22 */ static unsigned char led_display = 0;
/* 23 */
/* 24 */ INTCONbits.TMR0IF = 0;
/* 25 */
/* 26 */ s_count = s_count % (NUMBER_OF_LEDS + 1);
/* 27 */
/* 28 */ led_display = (1 << s_count++) - 1;
/* 29 */
/* 30 */ PORTB = led_display;
/* 31 */ }
/* 32 */
/* 33 */ void
/* 34 */ main (void)
/* 35 */ {
/* 36 */ TRISB = 0;
/* 37 */ PORTB = 0;
/* 38 */
/* 39 */ OpenTimer0 (TIMER_INT_ON & T0_SOURCE_INT & T0_16BIT);
/* 40 */ INTCONbits.GIE = 1;
/* 41 */
/* 42 */ while (1)
/* 43 */ {
/* 44 */ }
/* 45 */ }

Sample Application

© 2005 Microchip Technology Inc. DS51288F-page 59

Line 1: This line includes the generic processor header file. The correct processor is
selected via the -p command-line option. (See Section 2.5.1 “System Header
Files” and Section 2.10 “Processor-specific Header Files”)

Line 10: For PIC18 devices, the low interrupt vector is found at 000000018h. This line of
code changes the default code section to the absolute code section named
low_vector located at address 0x18. (See Section 2.9.1 “#pragma
sectiontype” and Section 2.9.2.3 “Interrupt Vectors”)

Line 13: This line contains inline assembly that will jump to the ISR. (See
Section 2.8.2 “Inline Assembly” and Section 2.9.2.3 “Interrupt Vectors”)

Line 16: This line returns the compiler to the default code section. (See Section 2.9.1
“#pragma sectiontype” and Table 2-6)

Line 18: This line specifies the function timer_isr as a low-priority interrupt service
routine. This is required in order for the compiler to generate a RETFIE instruc-
tion instead of a RETURN instruction for the timer_isr function. In addition, it
ensures that PROD special function register will be saved. (Section 2.9.2
“#pragma interruptlow fname / #pragma interrupt fname” and
Section 2.9.2.4 “ISR Context Saving”)

Line 19-20: These lines define the timer_isr function. Notice that it does not take any
parameters, and does not return anything (as required by ISRs). (See
Section 2.9.2.2 “Interrupt Service Routines”)

Line 24: This line clears the TMR0 interrupt flag to stop the program from processing the
same interrupt multiple times. (See Section 2.10 “Processor-specific Header
Files”)

Line 30: This line demonstrates how to modify the special function register PORTB in C.
(See Section 2.10 “Processor-specific Header Files”)

Line 36-37: These lines initialize the special function registers TRISB and PORTB. (See
Section 2.10 “Processor-specific Header Files”)

Line 39: This line enables the TMR0 interrupt, setting up the timer as an internal 16-bit
clock.

Line 40: This line enables global interrupts. (See Section 2.10 “Processor-specific
Header Files”)

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 60 © 2005 Microchip Technology Inc.

NOTES:

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 61

Appendix A. COFF File Format

The Microchip COFF specification is based upon the UNIX® System V COFF format,
as described in Understanding and Using COFF, Gintaras R. Gircys © 1988, O’Reilly
and Associates, Inc. Special mention is made where the Microchip format differs from
that described there.

A.1 struct filehdr - FILE HEADER

The filehdr structure holds information regarding the file. It is the first entry in a
COFF file. It is used to denote where the optional file header, symbol table and section
headers begin.

typedef struct filehdr
{

unsigned short f_magic;
unsigned short f_nscns;
unsigned long f_timdat;
unsigned long f_symptr;
unsigned long f_nsyms;
unsigned short f_opthdr;
unsigned short f_flags;

} filehdr_t;

A.1.1 unsigned short f_magic

The magic number is used to identify the implementation of COFF that the file follows.
For Microchip PICmicro MCU COFF files, this number is 0x1234.

A.1.2 unsigned short f_nscns

The number of sections in the COFF file.

A.1.3 unsigned long f_timdat

The time and date stamp when the COFF file was created (this value is a count of the
number of seconds since midnight January 1, 1970).

A.1.4 unsigned long f_symptr

A pointer to the symbol table.

A.1.5 unsigned long f_nsyms

The number of entries in the symbol table.

A.1.6 unsigned short f_opthdr

The size of the optional header record.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 62 © 2005 Microchip Technology Inc.

A.1.7 unsigned short f_flags

Information on what is contained in the COFF file. Table A-1 shows the different file
header flags, along with a description and respective values.

A.2 struct opthdr - OPTIONAL FILE HEADER

The opthdr structure contains implementation dependent file level information. For
PICmicro MCU COFF files, it is used to specify the name of the target processor,
version of the compiler/assembler and to define relocation types.

Note that the layout of this header is specific to the implementation (i.e., the Microchip
optional header is not the same format as the System V optional header).

typedef struct opthdr
{

unsigned short magic;
unsigned short vstamp;
unsigned long proc_type;
unsigned long rom_width_bits;
unsigned long ram_width_bits;

} opthdr_t;

A.2.1 unsigned short magic

The magic number can be used to determine the appropriate layout.

A.2.2 unsigned short vstamp

Version stamp.

TABLE A-1: FILE HEADER FLAGS

Flag Description Value

F_RELFLG Relocation information has been stripped from the
COFF file.

0x0001

F_EXEC The file is executable, and has no unresolved external
symbols.

0x0002

F_LNNO Line number information has been stripped from the
COFF file.

0x0004

L_SYMS Local symbols have been stripped from the COFF file. 0x0080

F_EXTENDED18 The COFF file was produced utilizing the Extended
mode.

0x4000

F_GENERIC The COFF file is processor independent. 0x8000

COFF File Format

© 2005 Microchip Technology Inc. DS51288F-page 63

A.2.3 unsigned long proc_type

Target processor type. Table A-2 shows the processor type along with the associated
value stored in this field.

TABLE A-2: PROCESSOR TYPE

Processor Value Processor Value

PIC18C242 0x8242 PIC18F4439 0x4439

PIC18C252 0x8252 PIC18F4455 0x4455

PIC18C442 0x8442 PIC18F448 0x8448

PIC18C452(1) 0x8452 PIC18F4480 0x4480

PIC18C601 0x8601 PIC18F4510 0x4510

PIC18C658 0x8658 PIC18F4515 0x4515

PIC18C801 0x8801 PIC18F452 0x452F

PIC18C858 0x8858 PIC18F4520 0x4520

PIC18F1220 0xA122 PIC18F4525 0x4525

PIC18F1320 0xA132 PIC18F4539 0x4539

PIC18F2220 0xA222 PIC18F4550 0x4550

PIC18F2320 0xA232 PIC18F458 0x8458

PIC18F2331 0x2331 PIC18F4580 0x4580

PIC18F2410 0x2410 PIC18F4585 0x4585

PIC18F242 0x242F PIC18F4610 0x4610

PIC18F2420 0x2420 PIC18F4620(2) 0x4620

PIC18F2431 0x2431 PIC18F4680 0x4680

PIC18F2439 0x2439 PIC18F6310 0x6310

PIC18F2455 0x2455 PIC18F6390 0x6390

PIC18F248 0x8248 PIC18F6410 0x6410

PIC18F2480 0x2480 PIC18F6490 0x6490

PIC18F2510 0x2510 PIC18F64J15 0xB415

PIC18F2515 0x2515 PIC18F6520 0xA652

PIC18F252 0x252F PIC18F6525 0x6525

PIC18F2520 0x2520 PIC18F6585 0x6585

PIC18F2525 0x2525 PIC18F65J10 0xB510

PIC18F2539 0x2539 PIC18F65J15 0xB515

PIC18F2550 0x2550 PIC18F6620 0xA662

PIC18F258 0x8258 PIC18F6621 0xA621

PIC18F2580 0x2580 PIC18F6627 0x6627

PIC18F2585 0x2585 PIC18F6680 0x6680

PIC18F2610 0x2610 PIC18F66J10 0xB610

PIC18F2620 0x2620 PIC18F66J15 0xB615

PIC18F2680 0x2680 PIC18F6720 0xA672

PIC18F4220 0xA422 PIC18F6722 0x6722

PIC18F4320 0xA432 PIC18F67J10 0xB710

PIC18F4331 0x4331 PIC18F8310 0x8310

PIC18F4410 0x4410 PIC18F8390 0x8390

PIC18F442 0x442F PIC18F8410 0x8410

PIC18F4420 0x4420 PIC18F8490 0x8490

PIC18F4431 0x4431 PIC18F84J15 0xC415

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 64 © 2005 Microchip Technology Inc.

Note 1: This is the processor utilized when compiling for the generic processor when the
compiler is operating in Non-extended mode.

2: This is the processor utilized when compiling for the generic processor when the
compiler is operating in Extended mode.

A.2.4 unsigned long rom_width_bits

Width of program memory in bits.

A.2.5 unsigned long ram_width_bits

Width of data memory in bits.

A.3 struct scnhdr - SECTION HEADER

The scnhdr structure contains information related to an individual section. The
PICmicro MCU COFF files make a slight departure from the normal COFF definition of
the section name. Since the PICmicro MCU COFF section names may be longer than
eight characters, the PICmicro MCU COFF files allow a string table entry for long
names.

typedef struct scnhdr
{

union
{
 char _s_name[8] /* section name is a string */
 struct
 {
 unsigned long _s_zeroes
 unsigned long _s_offset
 }_s_s;
}_s;

unsigned long s_paddr;
unsigned long s_vaddr;
unsigned long s_size;
unsigned long s_scnptr;
unsigned long s_relptr;
unsigned long s_lnnoptr;
unsigned short s_nreloc;
unsigned short s_nlnno;
unsigned long s_flags;

} scnhdr_t;

PIC18F8520 0xA852 PIC18F8627 0x8625

PIC18F8525 0x8525 PIC18F8680 0x8680

PIC18F8585 0x8585 PIC18F86J10 0xC610

PIC18F85J10 0xC510 PIC18F86J15 0xC615

PIC18F85J15 0xC515 PIC18F8720 0xA872

PIC18F8620 0xA862 PIC18F8722 0x8721

PIC18F8621 0x8621 PIC18F87J10 0xC710

TABLE A-2: PROCESSOR TYPE (CONTINUED)

Processor Value Processor Value

COFF File Format

© 2005 Microchip Technology Inc. DS51288F-page 65

A.3.1 union _s

A string or a reference into the string table. Strings of fewer than eight characters are
stored directly, and all others are stored in the string table. If the first four characters of
the string are 0, then the last four bytes are assumed to be an offset into the string table.
This is a bit nasty as it is not strictly conforming to the ANSI specification (i.e., type
munging is undefined behavior by the standard), but it is effective and it maintains
binary compatibility with the System V layout, which other options would not do. This
implementation has the advantage of mirroring the standard System V structure used
for long symbol names.

A.3.1.1 char s_name[8]

In-place section name. If the section name is fewer than eight characters long, then the
section name is stored in place.

A.3.1.2 struct _s_s

Section name is stored in the string table. If the first four characters of the section name
are zero, then the last four form an offset into the string table to find the name of the
section.

A.3.1.2.1 unsigned long _s_zeroes

First four characters of the section name are zero.

A.3.1.2.2 unsigned long _s_offset

Offset of section name in the string table.

A.3.1.3 unsigned long s_paddr

Physical address of the section.

A.3.1.4 unsigned long s_vaddr

Virtual address of the section. Always contains the same value as s_paddr.

A.3.2 unsigned long s_size

Size of this section.

A.3.3 unsigned long s_scnptr

Pointer to the raw data in the COFF file for this section.

A.3.4 unsigned long s_relptr

Pointer to the relocation information in the COFF file for this section.

A.3.5 unsigned long s_lnnoptr

Pointer to the line number information in the COFF file for this section.

A.3.6 unsigned short s_nreloc

The number of relocation entries for this section.

A.3.7 unsigned short s_nlnno

The number of line number entries for this section.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 66 © 2005 Microchip Technology Inc.

A.3.8 unsigned long s_flags

Section type and content flags. The flags which define the section type and the section
qualifiers are stored as bit fields in the s_flags field. Masks are defined for the bit
fields to ease access. Table A-3 shows the different section header flags, along with a
description and respective values.

A.4 struct reloc - RELOCATION ENTRY

Any instruction that accesses a relocatable identifier (variable, function, etc.) must have
a relocation entry. This differs from the System V relocation data, where the offset is
stored in the location being relocated to, in that the offset to add to the base address of
the symbol is stored in the relocation entry. This is necessary because Microchip
relocations are not restricted to just filling in an address+offset value into the data
stream, but also do simple code modifications. It is much more straightforward to store
the offset here, at the cost of a slightly increased file size.

typedef struct reloc
{

unsigned long r_vaddr;
unsigned long r_symndx;
short r_offset;
unsigned short r_type;

} reloc_t;

A.4.1 unsigned long r_vaddr

Address of reference (byte offset relative to start of raw data).

A.4.2 unsigned long r_symndx

Index into symbol table.

A.4.3 short r_offset

Signed offset to be added to the address of symbol r_symndx.

TABLE A-3: SECTION HEADER FLAGS

Flag Description Value

STYP_TEXT Section contains executable code. 0x00020

STYP_DATA Section contains initialized data. 0x00040

STYP_BSS Section contains uninitialized data. 0x00080

STYP_DATA_ROM Section contains initialized data for program
memory.

0x00100

STYP_ABS Section is absolute. 0x01000

STYP_SHARED Section is shared across banks. 0x02000

STYP_OVERLAY Section is overlaid with other sections of the
same name from different object modules.

0x04000

STYP_ACCESS Section is available using access bit. 0x08000

STYP_ACTREC Section contains the overlay activation record
for a function.

0x10000

COFF File Format

© 2005 Microchip Technology Inc. DS51288F-page 67

A.4.4 unsigned short r_type

Relocation type, implementation defined values. Table A-4 lists the relocation types,
along with a description and respective values.

TABLE A-4: RELOCATION TYPES

Type Description Value

RELOCT_CALL CALL instruction (first word only on PIC18) 1

RELOCT_GOTO GOTO instruction (first word only on PIC18) 2

RELOCT_HIGH Second 8 bits of an address 3

RELOCT_LOW Low order 8 bits of an address 4

RELOCT_P 5 bits of address for the P operand of a PIC17 MOVFP
or MOVPF instruction

5

RELOCT_BANKSEL Generate the appropriate instruction to bank switch for
a symbol

6

RELOCT_PAGESEL Generate the appropriate instruction to page switch for
a symbol

7

RELOCT_ALL 16 bits of an address 8

RELOCT_IBANKSEL Generate indirect bank selecting instructions 9

RELOCT_F 8 bits of address for the F operand of a PIC17
MOVFP or MOVPF instruction

10

RELOCT_TRIS File register address for TRIS instruction 11

RELOCT_MOVLR MOVLR bank PIC17 banking instruction 12

RELOCT_MOVLB MOVLB PIC17 and PIC18 banking instruction 13

RELOCT_GOTO2 Second word of an PIC18 GOTO instruction 14

RELOCT_CALL2 Second word of an PIC18 CALL instruction 14

RELOCT_FF1 Source register of the PIC18 MOVFF instruction 15

RELOCT_FF2 Destination register of the PIC18 MOVFF instruction 16

RELOCT_SF2 Destination register of the PIC18 MOVSF instruction 16

RELOCT_LFSR1 First word of the PIC18 LFSR instruction 17

RELOCT_LFSR2 Second word of the PIC18 LFSR instruction 18

RELOCT_BRA PIC18 BRA instruction 19

RELOCT_RCALL PIC18 RCALL instruction 19

RELOCT_CONDBRA PIC18 relative conditional branch instructions 20

RELOCT_UPPER Highest order 8 bits of a 24-bit address 21

RELOCT_ACCESS PIC18 access bit 22

RELOCT_PAGESEL_WREG Selecting the correct page using WREG as scratch 23

RELOCT_PAGESEL_BITS Selecting the correct page using bit set/clear
instructions

24

RELOCT_SCNSZ_LOW
RELOCT_SCNSZ_HIGH
RELOCT_SCNSZ_UPPER

Size of a section 25
26
27

RELOCT_SCNEND_LOW
RELOCT_SCNEND_HIGH
RELOCT_SCNEND_UPPER

Address of the end of a section 28
29
30

RELOCT_SCNEND_LFSR1
RELOCT_SCNEND_LFSR2

Address of the end of a section on LFSR 31
32

RELOCT_TRIS_4BIT File register address for 4-bit TRIS instruction 33

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 68 © 2005 Microchip Technology Inc.

A.5 struct syment - SYMBOL TABLE ENTRY

Symbols are created for all identifiers, as well as sections, function begins, function
ends, block begins and block ends.

#define SYMNMLEN 8
struct syment
{

union
{
 char _n_name[SYMNMLEN];
 struct
 {
 unsigned long _n_zeroes;
 unsigned long _n_offset;
 } _n_n;
 char *_n_nptr[2];
} _n;

unsigned long n_value;
short n_scnum;
unsigned short n_type;
char n_sclass;
unsigned char n_numaux;

}

A.5.1 union _n

The symbol name may be stored directly as a string, or it may be a reference to the
string table. Symbol names of fewer than eight characters are stored here, with all
others being stored in the string table. It is from this structure that the inspiration comes
for extending the section data structures to allow for section names to be stored in the
symbol table.

A.5.1.1 char _n_name [SYMNMLEN]

In-place symbol name, if fewer than eight characters long.

A.5.1.2 struct _n_n

Symbol name is located in string table. If the first four characters of the symbol name
are zero, then the last four form an offset into the string table to find the name of the
symbol.

A.5.1.2.1 unsigned long _n_zeros

First four characters of the symbol name are zero.

A.5.1.2.2 unsigned long _n_offset

Offset of symbol name in the string table.

A.5.1.3 char *_n_nptr

Allows for overlaying.

A.5.2 unsigned long n_value

Value of symbol. Typically, this is the address of the symbol within the section in which
it resides. For link-time constants (e.g., the Microchip symbol _stksize), the value is
a literal value and not an address. To the linker, there is typically no difference. The
distinction is only in the usage in the application code.

COFF File Format

© 2005 Microchip Technology Inc. DS51288F-page 69

A.5.3 short n_scnum

References the section number where this symbol is located.

A.5.4 unsigned short n_type

Base type and derived type.

A.5.4.1 SYMBOL TYPES

Table A-5 lists the base types, along with a description and respective values.

A.5.4.2 DERIVED TYPES

Pointers, arrays, and functions are handled via derived types. Table A-6 lists the
derived types, along with a description and respective values.

TABLE A-5: BASE SYMBOL TYPES

Type Description Value

T_NULL null 0

T_VOID void 1

T_CHAR character 2

T_SHORT short integer 3

T_INT integer 4

T_LONG long integer 5

T_FLOAT floating point 6

T_DOUBLE double length floating point 7

T_STRUCT structure 8

T_UNION union 9

T_ENUM enumeration 10

T_MOE member of enumeration 11

T_UCHAR unsigned character 12

T_USHORT unsigned short 13

T_UINT unsigned integer 14

T_ULONG unsigned long 15

TABLE A-6: DERIVED TYPES

Derived Type Description Value

DT_NON no derived type 0

DT_PTR pointer 1

DT_FCN function 2

DT_ARY array 3

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 70 © 2005 Microchip Technology Inc.

A.5.5 char n_sclass

Storage class of the symbol. Table A-7 lists the storage classes, along with a
description and respective values.

A.5.6 unsigned char n_numaux

The number of auxiliary entries for this symbol.

TABLE A-7: STORAGE CLASSES

Storage Class Description Value

C_EFCN Physical end of function 0xFF

C_NULL Null 0

C_AUTO Automatic variable 1

C_EXT External symbol 2

C_STAT Static 3

C_REG Register variable 4

C_EXTDEF External definition 5

C_LABEL Label 6

C_ULABEL Undefined label 7

C_MOS Member of structure 8

C_ARG Function argument 9

C_STRTAG Structure tag 10

C_MOU Member of union 11

C_UNTAG Union tag 12

C_TPDEF Type definition 13

C_USTATIC Undefined static 14

C_ENTAG Enumeration tag 14

C_MOE Member of enumeration 16

C_REGPARM Register parameter 17

C_FIELD Bit field 18

C_AUTOARG Automatic argument 19

C_LASTENT Dummy entry (end of block) 20

C_BLOCK “bb” or “eb” 100

C_FCN “bf” or “ef” 101

C_EOS End of structure 102

C_FILE File name 103

C_LINE Line number reformatted as symbol table entry 104

C_ALIAS Duplicate tag 105

C_HIDDEN External symbol in dmert public library 106

C_EOF End of file 107

C_LIST Absolute listing on or off 108

C_SECTION Section 109

COFF File Format

© 2005 Microchip Technology Inc. DS51288F-page 71

A.6 struct coff_lineno - LINE NUMBER ENTRY

Any executable source line of code gets a coff_lineno entry in the line number table
associated with its section. For a PICmicro MCU COFF file, this means that every
instruction may have a coff_lineno entry since the debug information is often for
debugging through the absolute listing file. Readers of this information should note that
the COFF file is not required to have an entry for every instruction, though it typically
does. This information is significantly different from the System V format.

struct coff_lineno
{

unsigned long l_srcndx;
unsigned short l_lnno;
unsigned long l_paddr;
unsigned short l_flags;
unsigned long l_fcnndx;

} coff_lineno_t;

A.6.1 unsigned long l_srcndx

Symbol table index of associated source file.

A.6.2 unsigned short l_lnno

Line number.

A.6.3 unsigned long l_paddr

Address of code for this line number entry.

A.6.4 unsigned short l_flags

Bit flags for the line number entry. Table A-8 lists the bit flags, along with a description
and respective values.

A.6.5 unsigned long l_fcnndx

Symbol table index of associated function (if there is one).

A.7 struct aux_file - AUXILIARY SYMBOL TABLE ENTRY FOR A SOURCE FILE

typedef struct aux_file
{

unsigned long x_offset;
unsigned long x_incline;
unsigned char x_flags;
char _unused[9];

} aux_file_t;

A.7.1 unsigned long x_offset

String table offset for filename.

A.7.2 unsigned long x_incline

Line number at which this file was included. If 0, file was not included.

TABLE A-8: LINE NUMBER ENTRY FLAGS

Flag Description Value

LINENO_HASFCN Set if l_fcndx is valid 0x01

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 72 © 2005 Microchip Technology Inc.

A.7.3 unsigned char x_flags

Bit flags for the .file entry. Table A-9 lists the bit flags, along with a description and
respective values.

A.8 struct aux_scn - AUXILIARY SYMBOL TABLE ENTRY FOR A SECTION

typedef struct aux_scn
{

unsigned long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;
char _unused[10];

} aux_scn_t;

A.8.1 unsigned long x_scnlen

Section length.

A.8.2 unsigned short x_nreloc

Number of relocation entries.

A.8.3 unsigned short x_nlinno

Number of line numbers.

A.9 struct aux_tag - AUXILIARY SYMBOL TABLE ENTRY FOR A
struct/union/enum TAGNAME

typedef struct aux_tag
{

char _unused[6];
unsigned short x_size;
char _unused2[4];
unsigned long x_endndx;
char _unused3[2];

} aux_tag_t;

A.9.1 unsigned short x_size

Size of structure, union or enumeration.

A.9.2 unsigned long x_endndx

Symbol index of next entry beyond this structure, union or enumerated tag.

TABLE A-9: .file ENTRY FLAGS

Flag Description Value

X_FILE_DEBUG_ONLY This .file entry was included for
debugging purposes only.

0x01

COFF File Format

© 2005 Microchip Technology Inc. DS51288F-page 73

A.10 struct aux_eos - AUXILIARY SYMBOL TABLE ENTRY FOR AN END OF
struct/union/enum

typedef struct aux_eos
{

unsigned long x_tagndx;
char _unused[2];
unsigned short x_size;
char _unused2[10];

} aux_eos_t;

A.10.1 unsigned long x_tagndx

Symbol index of a structure, union or enumerated tag.

A.10.2 unsigned short x_size

Size of a structure, union or enumeration.

A.11 struct aux_fcn - AUXILIARY SYMBOL TABLE ENTRY FOR A
FUNCTION NAME

typedef struct aux_fcn
{

unsigned long x_tagndx;
unsigned long x_size;
unsigned long x_lnnoptr;
unsigned long x_endndx;
short x_actscnum;

} aux_fcn_t;

A.11.1 unsigned long x_tagndx

The symbol table index of the structure or union tagname associated with the return
value type, if the return value base type is structure or union.

A.11.2 unsigned long x_lnnoptr

File pointer to line numbers for this function.

A.11.3 unsigned long x_endndx

Symbol index of next entry beyond this function.

A.11.4 short x_actscnum

Section number of the static activation record data.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 74 © 2005 Microchip Technology Inc.

A.12 struct aux_fcn_calls - AUXILIARY SYMBOL TABLE ENTRY FOR
FUNCTION CALL REFERENCES

typedef struct aux_fcn_calls
{

unsigned long x_calleendx;
unsigned long x_is_interrupt;
char _unused[10];

} aux_fcn_calls_t;

A.12.1 unsigned long x_calleendx

Symbol index of the called function. If call of a higher order function, set to
AUX_FCN_CALLS_HIGHERORDER.

#define AUX_FCN_CALLS_HIGHERORDER ((unsigned long)-1)

A.12.2 unsigned long x_is_interrupt

Specifies whether the function is an interrupt, and if so, the priority of the interrupt.

0: not an interrupt

1: low priority

2: high priority

A.13 struct aux_arr - AUXILIARY SYMBOL TABLE ENTRY FOR AN ARRAY

#define X_DIMNUM 4
typedef struct aux_arr
{

unsigned long x_tagndx;
unsigned short x_lnno;
unsigned short x_size;
unsigned short x_dimen[X_DIMNUM];

} aux_arr_t;

A.13.1 unsigned long x_tagndx

The symbol table index of the structure or union tagname associated with the array
element type, if the base type is structure or union.

A.13.2 unsigned short x_size

Size of array.

A.13.3 unsigned short x_dimen[X_DIMNUM]

Size of first four dimensions.

COFF File Format

© 2005 Microchip Technology Inc. DS51288F-page 75

A.14 struct aux_eobf - AUXILIARY SYMBOL TABLE ENTRY FOR THE END OF
A BLOCK OR FUNCTION

typedef struct aux_eobf
{

char _unused[4];
unsigned short x_lnno;
char _unused2[12];

} aux_eobf_t;

A.14.1 unsigned short x_lnno

C source line number of the end, relative to start of block/function.

A.15 struct aux_bobf - AUXILIARY SYMBOL TABLE ENTRY FOR THE
BEGINNING OF A BLOCK OR FUNCTION

typedef struct aux_bobf
{

char _unused[4];
unsigned short x_lnno;
char _unused2[6];
unsigned long x_endndx;
char _unused3[2];

} aux_bobf_t;

A.15.1 unsigned short x_lnno

C source line number of the beginning, relative to start enclosing scope.

A.15.2 unsigned long x_endndx

Symbol index of next entry past this block/function.

A.16 struct aux_var - AUXILIARY SYMBOL TABLE ENTRY FOR A VARIABLE
OF TYPE struct/union/enum

typedef struct aux_var
{

unsigned long x_tagndx;
char _unused[2];
unsigned short x_size;
char _unused2[10];

} aux_var_t;

A.16.1 unsigned long x_tagndx

Symbol index of a structure, union or enumerated tag.

A.16.2 unsigned short x_size

Size of the structure, union or enumeration.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 76 © 2005 Microchip Technology Inc.

A.17 struct aux_field - AUXILIARY ENTRY FOR A BIT FIELD

typedef struct aux_field
{

char _unused[6];
unsigned short x_size;
char _unused2[10];

} aux_field_t;

A.17.1 unsigned short x_size

The size of the bit field, in bits.

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 77

Appendix B. ANSI Implementation-defined Behavior

B.1 INTRODUCTION

This section discusses MPLAB C18 implementation-defined behavior. The ISO stan-
dard for C requires that vendors document the specifics of “implementation-defined”
features of the language.

Implementation-defined behavior for the following sections is covered in section G.3 of
the ANSI C Standard.

B.2 IDENTIFIERS

ANSI C Standard: “The number of significant initial characters (beyond 31) in an
identifier without external linkage (6.1.2).”

“The number of significant initial characters (beyond 6) in an
identifier with external linkage (6.1.2).”

“Whether case distinctions are significant in an identifier with
external linkage (6.1.2).”

Implementation: All MPLAB C18 identifiers have at least 31 significant characters.
Case distinctions are significant in an identifier with external
linkage.

B.3 CHARACTERS

ANSI C Standard: “The value of an integer character constant that contains more
than one character or a wide character constant that contains
more than one multibyte character (6.1.3.4).”

Implementation: The value of the integer character constant is the 8-bit value of
the first character. Wide characters are not supported.

ANSI C Standard: “Whether a ‘plain’ char has the same range of values as signed
char or unsigned char (6.2.1.1).”

Implementation: A plain char has the same range of values as a signed char.
For MPLAB C18, this may be changed to unsigned char via a
command line switch (-k).

Note: The section numbers in parenthesis, e.g., (6.1.2), refer to the ANSI C
standard X3.159-1989.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 78 © 2005 Microchip Technology Inc.

B.4 INTEGERS

ANSI C Standard: “A char, a short int or an int bit field, or their signed or
unsigned varieties, or an enumeration type, may be used in an
expression wherever an int or unsigned int may be used. If
an int can represent all values of the original type, the value is
converted to an int; otherwise, it is converted to an unsigned
int. These are called the integral promotions. All other arithmetic
types are unchanged by the integral promotions.

“The integral promotions preserve value including sign. (6.2.1.1).”

Implementation: MPLAB C18 does not enforce this by default. The -Oi option can
be used to require the compiler to enforce the ANSI defined
behavior. See Section 2.7.1 “Integer Promotions”.

ANSI C Standard: “The result of converting an integer to a shorter signed integer, or
the result of converting an unsigned integer to a signed integer of
equal length, if the value cannot be represented (6.2.1.2).”

Implementation: When converting from a larger integer type to a smaller integer
type, the high order bits of the value are discarded and the
remaining bits are interpreted according to the type of the smaller
integer type. When converting from an unsigned integer to a
signed integer of equal size, the bits of the unsigned integer are
simply reinterpreted according to the rules for a signed integer of
that size.

ANSI C Standard: “The results of bitwise operations on signed integers (6.3).”

Implementation: The bitwise operators are applied to the signed integer as if it
were an unsigned integer of the same type (i.e., the sign bit is
treated as any other bit).

ANSI C Standard: “The sign of the remainder on integer division (6.3.5).”

Implementation: The remainder has the same sign as the quotient.

ANSI C Standard: “The result of a right shift of a negative-valued signed integral
type (6.3.7).”

Implementation: The value is shifted as if it were an unsigned integral type of the
same size (i.e., the sign bit is not propagated).

B.5 FLOATING-POINT

ANSI C Standard: “The representations and sets of values of the various types of
floating-point numbers (6.1.2.5).”

“The direction of truncation when an integral number is converted
to a floating-point number that cannot exactly represent the
original value (6.2.1.3).”

“The direction of truncation or rounding when a floating-point
number is converted to a narrower floating-point number
(6.2.1.4).”

Implementation: See Section 2.1.2 “Floating-point Types”.

The rounding to the nearest method is used.

ANSI Implementation-defined Behavior

© 2005 Microchip Technology Inc. DS51288F-page 79

B.6 ARRAYS AND POINTERS

ANSI C Standard: “The type of integer required to hold the maximum size of an
array — that is, the type of the sizeof operator, size_t
(6.3.3.4, 7.1.1).”

Implementation: size_t is defined as an unsigned short long int.

ANSI C Standard: “The result of casting a pointer to an integer or vice versa (6.3.4).”

Implementation: The integer will contain the binary value used to represent the
pointer. If the pointer is larger than the integer, the representation
will be truncated to fit in the integer.

ANSI C Standard: “The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t (6.3.6,
7.1.1).”

Implementation: ptrdiff_t is defined as an unsigned long short.

B.7 REGISTERS

ANSI C Standard: “The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (6.5.1).”

Implementation: The register storage-class specifier is ignored.

B.8 STRUCTURES AND UNIONS

ANSI C Standard: “A member of a union object is accessed using a member of a
different type (6.3.2.3).”

Implementation: The value of the member is the bits residing at the location for the
member interpreted as the type of the member being accessed.

ANSI C Standard: “The padding and alignment of members of structures (6.5.2.1).”

Implementation: Members of structures and unions are aligned on byte
boundaries.

B.9 BIT FIELDS

ANSI C Standard: “Whether a ‘plain’ int bit field is treated as a signed int or as
an unsigned int bit field (6.5.2.1).”

Implementation: A “plain” int bit field is treated as a signed int bit field.

ANSI C Standard: “The order of allocation of bit fields within a unit (6.5.2.1).”

Implementation: Bit fields are allocated from least significant bit to most significant
bit in order of occurrence.

ANSI C Standard: “Whether a bit field can straddle a storage-unit boundary
(3.5.2.1).”

Implementation: A bit field cannot straddle a storage unit boundary.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 80 © 2005 Microchip Technology Inc.

B.10 ENUMERATIONS

ANSI C Standard: “The integer type chosen to represent the values of an
enumeration type (6.5.2.2).”

Implementation: The smallest type capable of representing all values in the
enumeration type.

B.11 SWITCH STATEMENT

ANSI C Standard: “The maximum number of case values in a switch statement
(6.6.4.2).”

Implementation: The maximum number of values is limited only by target memory.

B.12 PREPROCESSING DIRECTIVES

ANSI C Standard: “The method for locating includable source files (6.8.2).”

Implementation: See Section 2.5.1 “System Header Files”.

ANSI C Standard: “The support for quoted names for includable source files (6.8.2).”

Implementation: See Section 2.5.2 “User Header Files”.

ANSI C Standard: “The behavior on each recognized #pragma directive (6.8.6).”

Implementation: See Section 2.9 “Pragmas”.

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 81

Appendix C. Command-line Summary

Usage: mcc18 [options] file [options]

TABLE C-1: COMMAND-LINE SUMMARY

Option Description Reference

-?, --help Displays the help screen 1.2

-I=<path> Add ‘path’ to include path 2.5.1, 2.5.2

-fo=<name> Object file name 1.2.1

-fe=<name> Error file name 1.2.1

-k Set plain char type to unsigned char 2.1

-ls Large stack (can span multiple banks) 3.2.4

-ms Set compiler memory model to small model
(default)

2.6, 3.1

-ml Set compiler memory model to large model 2.6, 3.1

-O, -O+ Enable all optimizations (default) 4

-O- Disable all optimizations 4

-Od+ Enable dead code removal (default) 4.10

-Od- Disable dead code removal 4.10

-Oi+ Enable integer promotion 2.7.1

-Oi- Disable integer promotion (default) 2.7.1

-Om+ Enable duplicate string merging (default) 4.1

-Om- Disable duplicate string merging 4.1

-On+ Enable banking optimizer (default) 4.3

-On- Disable banking optimizer 4.3

-Op+ Enable copy propagation (default) 4.8, 4.10

-Op- Disable copy propagation 4.8, 4.10

-Or+ Enable redundant store elimination (default) 4.9

-Or- Disable redundant store elimination 4.9

-Ou+ Enable unreachable code removal (default) 4.7

-Ou- Disable unreachable code removal 4.7

-Os+ Enable code straightening (default) 4.5

-Os- Disable code straightening 4.5

-Ot+ Enable tail merging (default) 4.6

-Ot- Disable tail merging 4.6

-Ob+ Enable branch optimizations (default) 4.2

-Ob- Disable branch optimizations 4.2

-sca Enable default auto locals (default). Valid for
Non-extended mode only.

2.3

-scs Enable default static locals. Valid for
Non-extended mode only.

2.3

-sco Enable default overlay locals (statically allocate
activation records). Valid for Non-extended mode
only.

2.3

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 82 © 2005 Microchip Technology Inc.

Option Description Reference

-Oa+ Enable default data in access memory. Valid for
Non-extended mode only.

2.9.1.3

-Oa- Disable default data in access memory (default).
Valid for Non-extended mode only.

2.9.1.3

-Ow+ Enable WREG tracking (default) 4.4

-Ow- Disable WREG tracking 4.4

-Opa+ Enable procedural abstraction (default) 4.11

-Opa- Disable procedural abstraction 4.11

-pa=<repeat count> Set procedural abstraction repeat count
(default = 4)

4.11

-p=<processor> Set processor (default is generic) 1.2.4, 2.6,
2.10

-D<macro>[=text] Define a macro 1.2.3

-w={1|2|3} Set warning level (default = 2) 1.2.2

-nw=<n> Suppress message <n> 1.2.2

-verbose Operate verbosely (show banner and other
information)

1.2

--extended Generate Extended mode code. 1.2.5

--no-extended Generate Non-extended mode code. 1.2.5

--help-message-list Display a list of all diagnostic messages 1.2.2

--help-message-all Display help for all diagnostic messages 1.2.2

--help-message=<n> Display help on diagnostic number <n> 1.2.2

--help-config Display help on device-specific configuration
settings

2.9.4

TABLE C-1: COMMAND-LINE SUMMARY (CONTINUED)

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 83

Appendix D. MPLAB C18 Diagnostics

This appendix lists errors, warnings, and messages generated by the MPLAB C18
compiler.

D.1 ERRORS

1000: %s

1002: syntax error, '%s' expected

The syntax of the pre-processor construct was expecting the specified
token. Common causes include typographical errors, missing required
operands to the directive, and mis-matched parenthesis.

1013: error in pragma directive

MPLAB C18 was expecting the pragma being parsed to be complete, but
did not see a new line. This would be caused by extra text following the
pragma.

1014: redundant attribute specifier declaring section '%s'

The #pragma sectiontype directive specifies the overlay or the access
attribute multiple times.

1016: integer constant expected for #line directive

The line number operand of the #line preprocessor directive must be an
integer constant.

1017: symbol name expected in 'interrupt' pragma

The 'save=' clause expects a comma-delimited list of statically allocated
in-scope symbol names which are to be saved and restored by the interrupt
function being specified. Common causes include specifying a symbol
which is not currently in scope, not including a header file which declares
the symbol being referenced, and typographical errors in the symbol name.

1018: function name expected in 'interrupt' pragma

The name of a function to be declared as an interrupt is expected as the
first parameter to the 'interrupt' pragma. The function symbol must be
currently in scope and must take no parameters and return no value.
Common causes include a missing prototype for the function being
declared as an interrupt and typographical errors.

1019: '%s' is a compiler managed resource - it should not appear in a save= list

The symbol named is not valid in a save= clause of an interrupt declaration.
There are some locations which if saved/restored via a save= will produce
aberrant code. These locations do not need additional context save and
can be safely removed from the save= clause to correct the error.

1020: unexpected input following '%s'

Extra information exists on the given preprocessor construct.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 84 © 2005 Microchip Technology Inc.

1021: unterminated comment

A C-style comment (i.e., /*) was not terminated. The line number of the error
message shows where the comment begins.

1022: end of file in argument '%s' for macro '%s'

The end of file was found while processing the specified argument in the
specified macro. Most likely cause is a missing parenthesis.

1023: end of file in valist argument for macro '%s'

The end of file was found while processing the variable arguments in the
specified macro. Most likely cause is a missing parenthesis.

1024: macro '%s' expects %d arguments, but only %d found

The specified macro expects a different number of arguments than
specified. To use a macro, the number of arguments passed must match
exactly the number of arguments defined for that macro.

1025: missing '%c' in header name

The end of the file was found while processing the header file name of a
#include statement. The cause is a missing terminator for the #include
directive on the line specified.

1026: malformed #include directive

Either a '"' or a '<' was expected after the #include, but something else was
found. Most likely caused by a mis-typed directive.

1027: unable to locate '%s'

The specified header file could not be found in the include file search paths
(either the system header files or the user header files). Make sure that the
appropriate -I command-line options have been specified. Other causes
include a mis-typed header file or insufficient access rights.

1028: %s without matching #if

The specified preprocessor directive was found without a matching #if.
Most likely caused by a mismatch in nesting or possibly a misspelling.

1029: malformed expression in '%s'

The expression for the specified preprocessor directive is incorrect. Most
likely caused by a mismatched parenthesis or a misspelling.

1030: identifier expected in %s

An identifier was expected in the specified preprocessor directive, but a C
identifier was not found. Most likely cause is a mis-typed identifier.

1031: '%c' expected in 'defined'

The 'defined' preprocessor directive expects to be followed by either
parentheses or an identifier. Most likely cause is a missing parenthesis or
a mis-typed identifier.

1032: ')' expected in expansion of macro '%s'

A closing parenthesis was expected when expanding the specified macro.
Most likely cause is a missing parenthesis.

1033: preprocessor can only input one file at a time

The preprocessor can only handle one source file as input. Most likely
caused by an error in the compiler executable invoking the preprocessor. If
invoking the preprocessor separately, correct the command line.

MPLAB C18 Diagnostics

© 2005 Microchip Technology Inc. DS51288F-page 85

1034: previous definition of macro '%s' does not agree

According to the ANSI standard, an identifier currently defined as an
object-like macro shall not be redefined by another #define preprocessing
directive unless the second definition is an object-like macro definition and
the two replacement lists are identical. Likewise, an identifier currently
defined as a function-like macro shall not be redefined by another #define
preprocessing directive unless the second definition is a function-like
macro definition that has the same number and spelling of parameters, and
the two replacement lists are identical.

1035: expecting macro name, received '%s' instead

An identifier was expected, but a C identifier was not found. Most likely
cause is a mis-typed identifier.

1036: syntax error in macro argument list, expecting ')'

Immediately after the variable argument list (...), a closing parenthesis is
expected.

1037: duplicate parameter name '%s' in macro '%s'

A macro's parameter names must be unique.

1038: syntax error in macro argument list

Either a comma was expected in the argument list and not found, or if
variable argument list (...) was specified, a closing parenthesis was
expected and not found.

1039: illegal character in macro name '%c'

Whitespace or a begin parenthesis is expected after the macro name. Most
likely cause is a mis-typed macro name.

1040: # or ## operator found in simple macro %s

The stringization (#) and concatenation (##) preprocessor operators can
only be used with an argument of a function-like macro.

1041: # operator requires a parameter name as operand

The stringization preprocessor operator (#) requires a parameter name as
the operand, but a C identifier was not found. Most likely cause is a
mis-typed identifier.

1042: filename for %s directive exceeds maximum filename length

The name of the file specified in the specified preprocessor directive
exceeds the maximum filename length of MAX_FILENAME_PATH_LEN.

1050: section address permitted only at definition

The absolute address in the location clause of the #pragma
sectiontypedirective may only be specified in the first pragma defining this
section.

1052: section overlay attribute does not match definition

MPLAB C18 requires that a previously declared section's attribute must
match those which are being specified in the current #pragma sectiontype
directive.

1053: section share attribute does not match definition

MPLAB C18 requires that a previously declared section's attribute must
match those which are being specified in the current #pragma sectiontype
directive.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 86 © 2005 Microchip Technology Inc.

1054: section type does not match definition

MPLAB C18 has previously seen this section name, but it was of a different
type (i.e., code, idata, udata, romdata).

1055: section access attribute does not match definition

MPLAB C18 requires that a previously declared section's attribute must
match those which are being specified in the current #pragma sectiontype
directive.

1070: too many line numbers in section '%s'

The COFF file format only allows (32767 * 2 + 1) lines in a single section.
Reduce the number of lines in your source file.

1071: too many relocations in section '%s'

The COFF file format only allows (32767 * 2 + 1) relocations in a single
section. Reduce the number of variable references in your source file.

1072: too many function calls for ISR '%s'

An ISR may only call 253 distinct functions. The output object file format
(COFF) limits the number of auxiliary entries to 255. An ISR requires two
auxiliary entries and a distinct auxiliary entry is required for each call to a
distinct function.

1073: too many function calls for '%s'

A non-interrupt function may only call 254 distinct functions. The output
object file format (COFF) limits the number of auxiliary entries to 255. A
non-interrupt function requires one auxiliary entry and a distinct auxiliary
entry is required for each call to a distinct function.

1099: %s

source code '#error' directive message

1100: syntax error

Invalid function type definition.

1101: lvalue required

An expression which designates an object is required. Common causes
include missing parentheses and a missing '*' operator.

1102: cannot assign to 'const' modified object

An object qualified with 'const' is declared to be read-only data and
modifications to it are therefore not allowed.

1103: unknown escape sequence '%s'

The specified escape sequence is not known to the compiler. Check the
ANSI standard for a list of valid character escape sequences.

1104: division by zero in constant expression

The compiler cannot process a constant expression which contains a divide
by (or modulus by) zero.

1105: symbol '%s' has not been defined

A symbol has been referenced before it has been defined. Common causes
include a misspelled symbol name, a missing header file that declares the
symbol, and a reference to a symbol valid only in an inner scope.

1106: '%s' is not a function

A symbol must be a function name in order to be declared as an interrupt
function.

MPLAB C18 Diagnostics

© 2005 Microchip Technology Inc. DS51288F-page 87

1107: interrupt functions must not take parameters

When the processor vectors to an interrupt routine, no parameters are
passed, so a function declared as an interrupt function should not expect
parameters.

1108: interrupt functions must not return a value

Since interrupts are invoked asynchronously by the processor, there will not
be a calling routine to which a value can be returned.

1109: type mismatch in redeclaration of '%s'

The type of the symbol declared is not compatible with the type of a
previous declaration of the same symbol. Common causes include missing
qualifiers or misplaced qualifiers.

1111: undefined label '%s' in '%s'

The label has been referenced via a 'goto' statement, but has not been
defined in the function. Common causes include a misspelled label
identifier and a reference to an out of scope label, (i.e., a label defined in
another function).

1112: integer type expected in switch control expression

The control expression for a switch statement must be an integer type.
Common causes include a missing '*' operator and a missing '[]' operator.

1113: integer constant expected for case label value

The value for a case label must be an integer constant.

1114: case label outside switch statement detected

A 'case' label is only valid inside the body of a switch statement. Common
causes include a misplaced '}'.

1159: default label outside switch statement detected

A 'default' label is only valid inside the body of a switch statement. Common
causes include a misplaced '}'.

1115: multiple default labels in switch statement

A switch statement can only have a single 'default' label. Common causes
include a missing '}' to close an inner switch.

1116: type mismatch in return statement

The type of the return value is not compatible with the declared return type
of the function. Common causes include a missing '*' or '[]' operator.

1117: scalar type expected in 'if' statement

An 'if' statement control expression must be of scalar type, (i.e., an integer
or a pointer).

1118: scalar type expected in 'while' statement

A 'while' statement control expression must be of scalar type, (i.e., an
integer or a pointer).

1119: scalar type expected in 'do..while' statement

A 'do..while' statement control expression must be of scalar type, (i.e., an
integer or a pointer).

1120: scalar type expected in 'for' statement

A 'for' statement control expression must be of scalar type, (i.e., an integer
or a pointer).

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 88 © 2005 Microchip Technology Inc.

1121: scalar type expected in '?:' expression

A '?:' operator control expression must be of scalar type, (i.e., an integer or
a pointer).

1122: scalar operand expected for '!' operator

The '!' operator requires that its operand be of scalar type.

1123: scalar operands expected for '||' operator

The logical OR operator, '||', requires scalar operands.

1124: scalar operands expected for '&&' operator

The logical AND operator, '&&', requires scalar operands.

1125: 'break' must appear in a loop or switch statement

A 'break' statement must be inside a 'while', 'do', 'for', or 'switch' statement.
Common causes include a misplaced '}'.

1126: 'continue' must appear in a loop statement

A 'continue' statement must be inside a 'while', 'do', 'for', or 'switch'
statement.

1127: operand type mismatch in '?:' operator

The types of the result operands of the '?:' operator must be either both
scalar types or compatible types.

1128: compatible scalar operands required for comparison

A comparison operator must have operands of compatible scalar types.

1129: [] operator requires a pointer and an integer as operands

The array access operator, '[]', requires that one operand be a pointer and
the other be an integer, that is, for 'x[y]' the expression '*(x+y)' must be valid.
'x[y]' is functionally equivalent to '*(x+y)'.

1130: pointer operand required for '*' operator

The '*' dereference operator requires a pointer to a non-void object as its
operand

1131: type mismatch in assignment

The assignment operators require that the result of the right hand
expression be of compatible type with the type of the result of the left hand
expression. Common causes include a missing '*' or '[]' operator.

1132: integer type expected for right hand operand of '-=' operator

The '-=' operator requires that the right hand side be of integer type when
the left hand side is of pointer type. Common causes include a missing '*'
or '[]' operator.

1133: type mismatch in '-=' operator

The types of the operands of the '-=' operator must be such that for 'x-=y'
the expression 'x=x-y' is valid.

1134: arithmetic operands required for multiplication operator

The '*' and '*=' multiplication operators require that their operands be of
arithmetic type. Common causes include a missing '*' dereference operator
or a missing '[]' index operator.

1135: integer operands required for modulus operator

The '%' and '%=' modulus operators require that their operands be of
integer type. Common causes include a missing '*' dereference operator or
a missing '[]' index operator.

MPLAB C18 Diagnostics

© 2005 Microchip Technology Inc. DS51288F-page 89

1136: integer operands required for shift operator

The bitwise shift operators require that their operands be of integer type.
Common causes include a missing '*' dereference operator or a missing '[]'
index operator.

1137: integer types required for bitwise AND operator

The '&' and '&=' operators require that both operands be of integer type.
Common causes include a missing '*' or '[]' operator.

1138: integer types required for bitwise OR operator

The '|' and '|=' operators require that both operands be of integer type.
Common causes include a missing '*' or '[]' operator.

1139: integer types required for bitwise XOR operator

The '^' and '^=' operators require that both operands be of integer type.
Common causes include a missing '*' or '[]' operator.

1140: integer type required for bitwise NOT operator

The '~' operator requires that the operand be of integer type. Common
causes include a missing '*' or '[]' operator.

1141: integer type expected for pointer addition

The addition operator requires that when one operand is of pointer type, the
other must be of integer type. Common causes include a missing '*' or '[]'
operator.

1142: type mismatch in '+' operator

The types of the operands of the '+' operator must be such that one
operand is of pointer type and the other is of integer type or both operands
are of arithmetic type.

1143: pointer difference requires pointers to compatible types

When calculating the difference between two pointers, the pointers must
point to objects of compatible type. Common causes include missing
parentheses and a missing '[]' operator.

1144: integer type required for pointer subtraction

When the left hand operand of the subtraction operator is of pointer type,
the right hand operand must be of integer type. Common causes include a
missing '*' or '[]' operator.

1145: arithmetic type expected for subtraction operator

When the left hand operand is not of pointer type, the subtraction operator
requires that both operands be of arithmetic type.

1146: type mismatch in argument %d

The type of an argument to a function call must be compatible with the
declared type of the corresponding parameter.

1147: scalar type expected for increment operator

The increment operators require that the operand be a modifiable lvalue of
scalar type.

1148: scalar type expected for decrement operator

The decrement operators require that the operand be a modifiable lvalue of
scalar type.

1149: arithmetic type expected for unary plus

The unary plus operator requires that its operand be of arithmetic type.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 90 © 2005 Microchip Technology Inc.

1150: arithmetic type expected for unary minus

The unary minus operator requires that its operand be of arithmetic type.

1151: struct or union object designator expected

The member access operators, '.' and '->' require operands of struct/union
and pointer to struct/union, respectively.

1152: scalar or void type expected for cast

An explicit cast requires that the type of the operand be of scalar type and
the type being cast to be scalar type or void type.

1153: cannot assign array type objects

An object of array type may not be directly assigned. Assignment is allowed
only to array elements.

1154: parameter %d in '%s' must have a name

Parameters in a function definition must have an identifier declarator to
name them. The naming declarator is not required in prototypes, but is in a
definition.

1155: 'overlay' symbol '%s' not in function scope

Variables may only be overlay within the scope of a function.

1156: member '%s' declared as having function type

Structure and union members cannot be of function type. Likely cause is an
incorrectly declared function pointer.

1157: function 'main' should be declared as 'void main (void)'

The MPLAB C18 startup code will invoke function 'main' with no parameters
and expects no return value. 'main' should always be declared to take no
parameters and to not return a value.

1158: arithmetic operands required for division operator

The '/' and '/=' division operators require that their operands be of arithmetic
type. Common causes include a missing '*' dereference operator or a
missing '[]' index operator.

1160: conflicting storage classes specified

A declaration may only specify a single storage class.

1161: conflicting base types specified

A declaration may only specify a single base type (void, int, float, et.al.).
Multiple instances of the same base type is also an error (e.g.,int int x;).

1162: both 'signed' and 'unsigned' specified

A type may include only one of 'signed' and 'unsigned'.

1163: function must be located in program memory

All functions must be located in program memory, as data memory is not
executable.

1165: reference to incomplete tag '%s'

A forward reference struct or union tag cannot be referenced directly in a
declaration. Only pointers to a forward referenced tag may be declared.

1166: invalid type specification

The type specification is not valid. Common causes include typographic
errors or misuse of a typedef type. (e.g., "int enum myEnum xyz;" has an
invalid type specification.)

MPLAB C18 Diagnostics

© 2005 Microchip Technology Inc. DS51288F-page 91

1168: reference to undefined enumeration tag '%s'

An enumeration tag must be defined prior to any declarations which
reference it. Unlike structure and union tags, forward references to
enumeration tags are not allowed.

1169: anonymous members allowed in unions only

An anonymous structure member may be declared only as a member of a
union.

1170: non-integral type bitfield detected

The type of a bitfield member of a structure must be an integral type.

1171: bitfield width greater than 8 detected

A bitfield must fit within a single storage unit, which for MPLAB C18 is a
byte. Thus, a bitfield must contain 8 or fewer bits.

1172: enumeration value of '%s' does not match previous

When the same enumeration constant name is used in multiple
enumeration tags, the value of the enumeration constant must be the same
in each enumeration.

1173: cannot locate a parameter in program memory, '%s'

Since all parameters are located on the stack, it is not possible to locate a
parameter in program memory. Common causes include a mis-typed
pointer to program memory declaration.

1174: local '%s' in program memory can not be 'auto'

A local variable which is located in program memory must be declared as
static or extern, as 'auto' local variables must be located on the stack.

1175: static parameter detected in function pointer '%s'

Function pointers require parameters be passed via the stack. When
compiling with static locals enabled, declare parameters for function
pointers and for functions whose addresses are assigned to function
pointers explicitly to 'auto'.

1200: cannot reference the address of a bitfield

The address of a bitfield member of a structure cannot be referenced
directly.

1201: cannot dereference a pointer to 'void' type

The '*' dereference operator requires a pointer to a non-void object as its
operand.

1202: call of non-function

The operand of the '()' function call post-fix operator must be of type 'pointer
to function.' Most commonly, this is a function identifier. Common causes
include missing scope parentheses.

1203: too few arguments in function call

To call a function, the number of arguments passed must match exactly the
number of parameters declared for the function.

1204: too many arguments in function call

To call a function, the number of arguments passed must match exactly the
number of parameters declared for the function.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 92 © 2005 Microchip Technology Inc.

1205: unknown member '%s' in '%s'

The structure or union tag does not have a member of the name requested.
Common causes include a misspelled member name and a missing
member access operator for a nested structure.

1206: unknown member '%s'

The structure or union type does not have a member of the name
requested. Common causes include a misspelled member name and a
missing member access operator for a nested structure.

1207: tag '%s' is incomplete

An incomplete struct or union tag cannot be referenced by the member
access operators. Common causes include a misspelled structure tag
name in the symbol definition.

1208: "#pragma interrupt" detected inside function body

The 'interrupt' pragma is only available at file level scope.

1210: unknown symbol '%s' in interrupt save list

The 'interrupt' pragma requires that symbols listed in the 'save' list must be
declared and in scope

1211: missing definition for interrupt function '%s'

The function was declared as an interrupt, but was never defined. The
function definition of an interrupt function must be in the same module as
the pragma declaring the function as an interrupt.

1212: static function '%s' referenced but not defined

The function has been declared as static and has been referenced
elsewhere in the module, but there is no definition for the function present.
Common causes include a misspelled function name in the function
definition.

1213: initializer list expected

The symbol being initialized requires a brace-enclosed initializer list, but a
single value initializer was found.

1214: constant expression expected in initializer

The initializer value for a statically allocated symbol must be a constant
expression.

1216: string initializer used for non-character array object

A string literal initializer is only valid for initializing objects of type 'array of
char' or type 'pointer to char' (either can be unsigned char as well).

1218: extraneous initializer values

The count of initializer values does not agree with the number of expected
values based on the type of the object being initialized. There are too many
values in the initializer list.

1219: integer constant expected

A constant expression of integral type was expected, but an expression of
non-integral type or a non-constant expression was found.

1220: initializer detected in typedef declaration of '%s'

A typedef declaration cannot include initializers.

1221: empty initializer list detected

An initializer list cannot be empty. There must be one or more initializer
values between the braces.

MPLAB C18 Diagnostics

© 2005 Microchip Technology Inc. DS51288F-page 93

1222: "#pragma config" detected inside function body

The 'config' pragma is only available at file level scope.

1223: configuration setting '%s' has already been specified

The specified configuration setting has been specified either in a different
#pragma config or previously in this #pragma config.

1224: configuration setting '%s' not recognized

The specified configuration setting is not recognized for the selected
device. Make sure that the setting specified is all uppercase and spelled
correctly. Use --help-config for information on the configuration settings
available for the selected device.

1225: configuration value '%s' not recognized for configuration setting '%s'

The specified configuration value is not recognized for the selected device
and configuration setting. Make sure that the value specified is all
uppercase and spelled correctly. Use --help-config for information on the
configuration settings and values available for the selected device.

1226: cannot specify both #pragma config and _CONFIG_DECL macro

Configuration settings can only be specified using either the #pragma
config directive or the _CONFIG_DECL macro, preferably #pragma config.

1227: cannot specify #pragma config directive when compiling for generic device

The #pragma config directive is a processor-specific directive and requires
that a specific processor be specified on the command line using the -p
option.

1250: '%s' operand %s must be a literal

The specified operand for the opcode must be a literal value, not a symbol
reference.

1251: '%s' operand count mismatch

The number of operands found for the specified opcode does not match the
number of operands expected. Unlike the MPASM assembler, the MPLAB
C1X in-line assembler expects all operands to be explicitly specified. There
are no default values for operands such as the access bit or destination bit.

1252: invalid opcode '%s' detected for processor '%s'

The opcode specified is not valid for the target processor. Common causes
include porting in-line assembly code from a processor with a different
instruction set (e.g., PIC17CXX to PIC18CXX) and typographical errors in
the spelling of the opcode.

1253: constant operand expected

Operands to in-line assembly opcodes must resolve to a constant
expression, where a constant expression is defined as a literal constant or
a statically allocated symbol reference optionally plus or minus an integer
constant. Common causes include the use of a dynamically allocated
symbol ('auto' local variables and parameters) as the operand to an in-line
assembly opcode.

1300: stack frame too large

The size of the stack frame has exceeded the maximum addressable size.
Commonly caused by too many local variables allocated as 'auto' storage
class in a single function.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 94 © 2005 Microchip Technology Inc.

1301: parameter frame too large

The size of the parameter frame has exceeded the maximum addressable
size. Commonly caused by too many parameters being passed to a single
function.

1302: old style function declarations not supported

MPLAB C18 does not currently support the old K&R style function
definitions. The in-line parameter type declarations recommended by the
ANSI standard should be used instead.

1303: 'near' symbol defined in non-access qualified section

Statically allocated variables allocated into a non-access qualified section
cannot be accessed via the access bit, and therefore defining them with the
'near' range qualifier would result in incorrect access to the location.

1304: illegal use of obsolete 'overlay' storage class for symbol '%s'

The overlay storage class is not supported in Extended mode. Also note
that in Non-extended mode, the overlay storage class is valid only for local
variables.

1500: unable to open file '%s'

The compiler was unable to open the named file. Common causes include
misspelled filename and insufficient access rights.

1504: redefinition of '%s'

The same function name may not have multiple definitions.

1505: redeclaration of '%s'

The same variable name may not have multiple defining declarations.

1506: function '%s' cannot have 'overlay' storage class specifier

The 'overlay' storage class specifier may not be used with functions.

1507: variable '%s' of 'overlay' storage class cannot have 'near' qualifier

The compiler does not currently support variables of 'overlay' storage class
in access ram.

1508: inconsistent linkage for %s

The identifier has been given both internal and external linkage.

1509: %s cannot have 'extern' storage class

The 'extern' storage class specifier may not be used with parameters.

1510: %s cannot have 'extern' storage class, block scope, and an initializer

The compiler does not support explicit initialization of block scope objects
with 'extern' storage class.

1511: ran out of internal memory for temps

The compiler cannot support the allocation of any more temporary
variables.

1512: redefinition of label '%s'

The same label may not have multiple definitions in the same function.

1513: redefinition of member '%s'

A structure or union may only have a single member with a given name.

1514: cast of a pointer to floating point is undefined

The requested cast is illegal. This error may be caused by omitting an array
subscript on assignment.

MPLAB C18 Diagnostics

© 2005 Microchip Technology Inc. DS51288F-page 95

D.2 WARNINGS

1515: redefinition of case value %ld

A switch statement may only have a single case statement for a given
value.

1516: array size must be greater than zero

The constant value given for the array size must be greater than zero.

2001: non-near symbol '%s' declared in access section '%s'

Statically allocated variables declared into an access qualified section will
always be placed by the linker into access data memory, and can therefore
always be qualified with the 'near' range qualifier. Not specifying the 'near'
range qualifier will not cause incorrect code, but may result in extraneous
bank select instructions.

2002: unknown pragma '%s'

The compiler has encountered a pragma directive which is not recognized.
As per ANSI/ISO requirements, the pragma is ignored. Common causes
include misspelled pragma names.

2003: _CONFIG_DECL macro has been deprecated; please utilize #pragma
config

The _CONFIG_DECL macro is considered obsolescent and is in the
process of being phased out. It is being replaced with the #pragma config
directive.

2025: default overlay locals is unsupported in Extended mode, -sco ignored

The overlay storage class is not supported in Extended mode.

2026: default static locals is unsupported in Extended mode, -scs ignored

The default storage class of static is not supported in Extended mode.

2027: default auto locals is redundant in Extended mode, -sca ignored

The default storage class for locals is always auto in Extended mode.

2028: default static locals is unsupported in Extended mode, -Ol ignored

The default storage class of static is not supported in Extended mode.

2029: default access RAM is unsupported in Extended mode, -Oa ignored

The default storage range of near is not supported in Extended mode.

2052: unexpected return value

A return of a value statement has been detected in a function declared to
return no value. The return value will be ignored.

2053: return value expected

A return with no value has been detected in a function declared to return a
value. The return value will be undefined.

2054: suspicious pointer conversion

A pointer has been used as an integer or an integer has been used as a
pointer without an explicit cast.

2055: expression is always false

The control expression of a conditional statement evaluates to a constant
false value.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 96 © 2005 Microchip Technology Inc.

2056: expression is always true

The control expression of a conditional statement evaluates to a constant
true value.

2058: call of function without prototype

A function call has been made without an in-scope function prototype for
the function being called. This can be un-safe, as no type-checking for the
function arguments can be performed.

2059: unary minus of unsigned value

The unary minus operator is normally only applied to signed values.

2060: shift expression has no effect

Shifting a value by zero bits has no effect on the value of the expression.

2062: '->' operator expected, not '.'

A struct/union member access via a pointer to struct/union has been
performed using the '.' operator.

2063: '.' operator expected, not '->'

A direct struct/union member access has been performed using the '->'
operator.

2064: static function '%s' not defined

The function has been declared as static, but there is no definition for the
function present. Common causes include a misspelled function name in
the function definition.

2065: static function '%s' never referenced

The static function has been defined, but has not been referenced.

2066: type qualifier mismatch in assignment

Pointer assignment where the source and destination pointers point to
objects of compatible type, but the source pointer points to an object which
is 'const' or 'volatile' qualified and the destination pointer does not.

2068: obsolete use of implicit 'int' detected

The ANSI standard allows a variable to be declared without a base type
being specified, e.g., "extern x;", in which case a base type of 'int' is implied.
This usage is deprecated by the standard as obsolete, and therefore a
diagnostic is issued to that effect.

2069: enumeration value exceeds maximum range

An enumeration value has been declared which is not expressible in a
'signed long' format and the enumeration tag has negative enumeration
values. An 'unsigned long' representation will be used for the enumeration,
but relative comparisons of those enumeration constants which have
negative representations may not behave as expected.

2071: %s cannot have 'overlay' storage class; replacing with 'static'

Parameters with 'overlay' storage class are not permitted at this time. When
the default local storage class is 'overlay', the 'static' storage class will be
assigned to parameters.

2072: invalid storage class specifier for %s; ignoring

The storage class specifier used is not permitted for this declaration.

2073: null-terminated initializer string too long

The null-terminated initializer string cannot fit in the array object.

MPLAB C18 Diagnostics

© 2005 Microchip Technology Inc. DS51288F-page 97

D.3 MESSAGES

2100: obsolete use of 'overlay' for symbol '%s', processing as 'auto'

The overlay storage class is not supported in Extended mode. The
declaration will be processed as if storage class 'auto' had been specified
instead.

2101: obsolete use of 'static' storage for parameter '%s', treating as 'auto'

When compiling in Extended mode, MPLAB C18 requires all function
parameters to be of automatic storage class. See the MPLAB C18 User's
Guide for more information.

2102: near range specifier ignored for 'auto' variable '%s'

Automatic storage class variables are located on the stack, and so the
'near' range qualifier, to place the variable in access memory, does not
apply.

3000: test of floating point for equality detected

Testing two floating point values for equality will not always yield the desired
results, as two expressions which are mathematically equivalent may
evaluate to slightly different values when computed due to rounding error.

3002: comparison of a signed integer to an unsigned integer detected

Comparing a signed integer value to an unsigned integer value may yield
unexpected results when the signed value is negative. To compare an
unsigned integer to the binary equivalent representation of the signed
value, the signed value should first be explicitly cast to the unsigned type
of the same size.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 98 © 2005 Microchip Technology Inc.

NOTES:

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 99

Appendix E. Extended Mode

This appendix details the differences between the Non-extended and Extended modes.
The differences include:

• Source Code Compatibility
- Stack Frame Size
- static Parameters
- overlay Keyword
- Inline Assembly
- Predefined Macros

• Command-line Option Differences
• COFF File Differences

E.1 SOURCE CODE COMPATIBILITY

E.1.1 Stack Frame Size

When the compiler is operating in Extended mode, the total stack frame size (local
variables, parameters and frame pointer preservation) is limited to 96 bytes per
function. In Non-extended mode, for each function 120 bytes are available for locals
and an additional 120 bytes are available for parameters.

E.1.2 static Parameters

static parameters are not supported when the compiler is operating in the Extended
mode. A warning diagnostic will be issued when the compiler is operating in the
Extended mode and a static parameter is seen. In addition, the compiler will act as
if the code explicitly specified an auto parameter. The parameter will now be stored on
the stack instead of being allocated globally. Since the total size of stack frame is limited
to 96 bytes per function, the application may result in a “stack frame too large” diagnos-
tic being issued that does not occur when the compiler is operating in Non-extended
mode. To resolve this, the function will need to be modified to take fewer parameters.

E.1.3 overlay Keyword

The overlay keyword is not supported when the compiler is operating in the Extended
mode. A warning diagnostic will be issued when the compiler is operating in the
Extended mode and the overlay keyword is seen. In addition, the compiler will act as
if the code explicitly specified the auto keyword. Similar to static parameters, the
overlay local variable will now be stored on the stack instead of being allocated
globally. Since the total size of the stack frame is limited to 96 bytes per function, the
application may result in a “stack frame too large” diagnostic being issued that does not
occur when the compiler is operating in the Non-extended mode. To resolve this, the
function will need to be modified to contain fewer auto local variables. One way to do
this is to change the overlay variables to static.

Note: Overlay sections (#pragma overlay) are supported by the compiler
regardless of the mode in which it is operating.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 100 © 2005 Microchip Technology Inc.

E.1.4 Inline Assembly

When operating in Extended mode, the compiler will accept the extended instructions
in inline assembly – ADDFSR, ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and
SUBULNK; however, when operating in Non-extended mode, the compiler will issue an
error when it encounters an extended instruction in inline assembly.

In addition, when operating in Extended mode, the compiler will not recognize the
bracketed syntax used by the MPASM assembler for indicating the indexed with literal
offset addressing (e.g., CLRF [2]). Instead, the compiler will recognize the indexed
with literal offset addressing in inline assembly when the f operand is less than or equal
to 0x5F and the access bit operand (a) is set to zero (e.g., CLRF 2, 0). This same
instruction will be interpreted as referencing access RAM when the compiler is
operating in Non-extended mode.

E.1.5 Predefined Macros

The predefined macros can be utilized in source code to make the source code
compatible regardless of the mode in which the compiler is operating. The
__EXTENDED18__ predefined macro will be the constant 1 when compiling for
Extended mode; whereas, the __TRADITIONAL18__ predefined macro will be the
constant 1 when compiling for Non-extended mode.

Here are some examples of specific instances where this may be useful:

1. Using the predefined macros to use static parameters in Non-extended mode
and auto parameters in Extended mode:
#ifdef __EXTENDED18__

#define SCLASS auto
#else

#define SCLASS static
#endif

void foo (SCLASS int bar);

2. Using the predefined macros to utilize the overlay keyword in Non-extended
mode and the auto keyword in Extended mode:
#ifdef __EXTENDED18__

#define SCLASS auto
#else

#define SCLASS overlay
#endif

void foo (void)
{

SCLASS int bar;

...
}

3. Using the predefined macros to use only Non-extended mode instructions in
inline assembly in Non-extended mode and to use Extended mode instructions
in inline assembly in Extended mode:
_asm
#ifdef __EXTENDED18__

PUSHL 5
#else

MOVLW 5
MOVWF POSTINC1, 0

#endif
...
MOVF POSTDEC1, 1, 0

_endasm

Extended Mode

© 2005 Microchip Technology Inc. DS51288F-page 101

E.2 COMMAND-LINE OPTION DIFFERENCES

The following command-line options are not supported when the compiler is operating
in the Extended mode:

• Default Local Storage Class (-scs/-sco/-sca)
When operating in the Extended mode, the compiler only supports default auto
locals.

• Default Data in Access Memory (-Oa+/-Oa-)
Since the amount of access RAM on an Extended mode device is limited, the
compiler does not support data being placed in access RAM by default when
operating in the Extended mode.

E.3 COFF FILE DIFFERENCES

E.3.1 Generic Processor

The processor type (proc_type) specified in the COFF file’s optional file header when
compiling for the generic processor (-p18cxx) will be set to PIC18F4620 when the
compiler is operating in the Extended mode and will be set to PIC18C452 when the
compiler is operating in the Non-extended mode.

E.3.2 File Header’s f_flags Field

When operating in Extended mode, the COFF file that is generated will have the
F_EXTENDED18 bit of the file header’s f_flags set. This bit is not set when the
compiler is operating in the Non-extended mode.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 102 © 2005 Microchip Technology Inc.

NOTES:

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 103

Glossary

A
Absolute Section
A section with a fixed address that cannot be changed by the linker.

Access Memory
Special general purpose registers on the PIC18 PICmicro microcontrollers that allow
access regardless of the setting of the Bank Select Register (BSR).

Address
The code that identifies where a piece of information is stored in memory.

Anonymous Structure
An unnamed object.

ANSI
American National Standards Institute

Assembler
A language tool that translates assembly source code into machine code.

Assembly
A symbolic language that describes the binary machine code in a readable form.

Assigned Section
A section that has been assigned to a target memory block in the linker command file.

Asynchronously
Multiple events that do not occur at the same time. This is generally used to refer to
interrupts that may occur at any time during processor execution.

B
Binary
The base two numbering system that uses the digits 0-1. The rightmost digit counts
ones, the next counts multiples of 2, then 22 = 4, etc.

C
Central Processing Unit
The part of a device that is responsible for fetching the correct instruction for execution,
decoding that instruction, and then executing that instruction. When necessary, it works
in conjunction with the Arithmetic Logic Unit (ALU) to complete the execution of the
instruction. It controls the program memory address bus, the data memory address bus
and accesses to the stack.

Compiler
A program that translates a source file written in a high-level language into machine
code.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 104 © 2005 Microchip Technology Inc.

Conditional Compilation
The act of compiling a program fragment only if a certain constant expression, specified
by a preprocessor directive, is true.

CPU
Central Processing Unit

E
Endianness
The ordering of bytes in a multi-byte object.

Error File
A file containing the diagnostics generated by the MPLAB C18 compiler.

Extended Mode
In Extended mode, the compiler will utilize the extended instructions (i.e., ADDFSR,
ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK) and the indexed
with literal offset addressing.

F
Fatal Error
An error that will halt compilation immediately. No further messages will be produced.

Frame Pointer
A pointer that references the location on the stack that separates the stack-based
arguments from the stack-based local variables.

Free-standing
An implementation that accepts any strictly conforming program that does not use
complex types and in which the use of the features specified in the library clause (ANSI
‘89 standard clause 7) is confined to the contents of the standard headers <float.h>,
<iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h> and
<stdint.h>.

H
Hexadecimal
The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f).
The digits A-F represent decimal values of 10 to 15. The rightmost digit counts ones,
the next counts multiples of 16, then 162 = 256, etc.

High-level Language
A language for writing programs that is further removed from the processor than
assembly.

I
ICD
In-Circuit Debugger

ICE
In-Circuit Emulator

IDE
Integrated Development Environment

Glossary

© 2005 Microchip Technology Inc. DS51288F-page 105

IEEE
Institute of Electrical and Electronics Engineers

Interrupt
A signal to the CPU that suspends the execution of a running application and transfers
control to an ISR so that the event may be processed. Upon completion of the ISR,
normal execution of the application resumes.

Interrupt Service Routine
A function that handles an interrupt.

ISO
International Organization for Standardization

ISR
Interrupt Service Routine

L
Latency
The time between when an event occurs and the response to it.

Librarian
A program that creates and manipulates libraries.

Library
A collection of relocatable object modules.

Linker
A program that combines object files and libraries to create executable code.

Little Endian
Within a given object, the least significant byte is stored at lower addresses.

M
Memory Model
A description that specifies the size of pointers that point to program memory.

Microcontroller
A highly integrated chip that contains a CPU, RAM, some form of ROM, I/O ports and
timers.

MPASM Assembler
Microchip Technology’s relocatable macro assembler for PICmicro microcontroller
families.

MPLIB Object Librarian
Microchip Technology’s librarian for PICmicro microcontroller families.

MPLINK Object Linker
Microchip Technology’s linker for PICmicro microcontroller families.

N
Non-extended Mode
In Non-extended mode, the compiler will not utilize the extended instructions nor the
indexed with literal offset addressing.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 106 © 2005 Microchip Technology Inc.

O
Object File
A file containing object code. It may be immediately executable or it may require linking
with other object code files, (e.g. libraries), to produce a complete executable program.

Object Code
The machine code generated by an assembler or compiler.

Octal
The base 8 number system that only uses the digits 0-7. The rightmost digit counts
ones, the next digit counts multiples of 8, then 82 = 64, etc.

P
Pragma
A directive that has meaning to a specific compiler.

R
RAM
Random Access Memory

Random Access Memory
A memory device in which information can be accessed in any order.

Read Only Memory
Memory hardware that allows fast access to permanently stored data but prevents
addition to or modification of the data.

ROM
Read Only Memory

Recursive
Self-referential (e.g., a function that calls itself).

Reentrant
A function that may have multiple, simultaneously active instances. This may happen
due to either direct or indirect recursion or through execution during interrupt
processing.

Relocatable
An object whose address has not been assigned to a fixed memory location.

Run-time Model
Set of assumptions under which the compiler operates.

S
Section
A portion of an application located at a specific address of memory.

Section Attribute
A characteristic ascribed to a section (e.g., an access section).

Special Function Register
Registers that control I/O processor functions, I/O status, timers or other modes or
peripherals.

Glossary

© 2005 Microchip Technology Inc. DS51288F-page 107

Storage Class
Determines the lifetime of the memory associated with the identified object.

Storage Qualifier
Indicates special properties of the objects being declared (e.g., const).

V
Vector
The memory locations that an application will jump to when either a reset or interrupt
occurs.

MPLAB® C18 C Compiler User’s Guide

DS51288F-page 108 © 2005 Microchip Technology Inc.

NOTES:

MPLAB® C18 C COMPILER
USER’S GUIDE

© 2005 Microchip Technology Inc. DS51288F-page 109

Index

Symbols
#pragma. See Pragmas
.cinit .. 46
.stringtable ... 16
.tmpdata ...30, 48
__18CXX .. 15
__EXTENDED18__ ..15, 100
__LARGE__.. 15
__PROCESSOR ... 15
__SMALL__.. 15
__TRADITIONAL18__15, 100
_asm .. 19
_endasm .. 19

A
Access RAM ...14, 23, 34
Anonymous Structures..................................18–19, 34
Assembler

Internal .. 19
vs. MPASM assembler 20

MPASM assembler ... 19
Assembly

Inline ..19, 100
_asm .. 19
_endasm.. 19

Mixing with C ...41–45
auto ... 12–13, 38, 41, 42

B
BSR.. 27, 28, 35, 48

C
char ...11, 77, 78

signed ..11, 77
unsigned..11, 77

ClrWdt() .. 35
code ...20–26
COFF File

Differences.. 101
Format ...61–76

Command-line Options7, 81–82
-D.. 9
--extended ...9–10
-fe ... 8
-fo ... 8
--help ... 7
--help-config .. 33
--help-message.. 8
--help-message-all 8
--help-message-list 8
-I.. 15
-k...11, 77

-ls.. 41
-ml.. 15, 37
-ms.. 15, 37
--no-extended .. 9–10
-nw.. 8
-O-.. 49
-Oa+ ... 23, 101
-Ob- ... 49, 50
-Ob+ ... 49, 50
-Od- ... 49, 55
-Od+ ... 49, 55
-Oi.. 15, 78
-Om- ... 49
-Om+ ... 49
-On- ... 49, 50
-On+ ... 49, 50
-Op- ... 49, 53
-Op+ ..49, 53, 54, 55
-Opa- ..49, 55, 56
-Opa+ ..49, 55, 56
-Or- ... 49, 54
-Or+ ... 49, 54
-Os- ... 49, 51
-Os+ ..49, 51, 52
-Ot- ... 49, 52
-Ot+ ... 49, 52
-Ou- ... 49, 53
-Ou+ ... 49, 53
-Ow- ... 49, 51
-Ow+ ... 49, 51
-p...9, 15, 35, 59
-pa=n ... 56
-sca ... 13, 101
-sco ... 13, 101
-scs ... 13, 101
-verbose... 7
-w.. 8

Command-line Usage .. 7, 81
Compiler Temporaries.............................27, 28, 30, 48
Compiler-managed Resources 48
Conditional Compilation ... 9
Configuration Pragma .. 33
Configuration Words .. 33
const .. 14
Customer Notification Service.................................... 5
Customer Support .. 6

Index

© 2005 Microchip Technology Inc. DS51288F-page 110

D
-D... 9
Data Memory Pointers. See ram Pointers
Default Section..22–23
Diagnostics ...8, 83–97

Level of Warning... 8
Suppressing.. 8

Documentation
Conventions.. 2
Layout ... 1

double .. 11

E
Endianness .. 12
--extended ..9–10
Extended Instructions

ADDFSR ..9, 100
ADDULNK..9, 50, 100
CALLW ..9, 100
MOVSF ..9, 100
MOVSS ..9, 100
PUSHL ..9, 100
SUBFSR ..9, 100
SUBULNK..9, 50, 100

Extended Mode...99–101
COFF File ..62, 64
Predefined Macro ... 15
Return Values ... 40
Selecting the Mode9–10, 82

extern ... 12, 34, 41, 43, 45

F
far..14, 23, 37
-fe... 8
float .. 11
Floating-point Types

double ... 11
float ... 11

-fo... 8
Frame Pointer ...38, 48

Initializing ...38, 41
FSR0 ...40, 48
FSR1 ...38, 46, 48
FSR2 ... 38, 41, 46, 48

G
Generic Processor 9, 59, 64, 101

Header File ... 35

H
Hardware Stack ... 38
Header Files

Generic Processor .. 35
Processor-specific 34, ??–35
System.. 15
User .. 15

--help .. 7
--help-config ... 33
--help-message ... 8
--help-message-all .. 8
--help-message-list .. 8

High-priority Interrupt ... 27, 31

I
-I ... 15
idata ...20–23, 26, 46
Inline Assembly .. 19, 100

_asm ... 19
_endasm ... 19
Macros. See Macros, Inline Assembly

Inline assembly .. 20
int

signed ... 11, 15
unsigned... 11

Integer Promotions... 15–16
Integer Types ... 11

char ..11, 77, 78
signed .. 11, 77
unsigned.. 11, 77

int
signed .. 11, 15
unsigned.. 11

long
signed .. 11
unsigned.. 11

long short int.. 11
short

signed .. 11
unsigned.. 11

short long int.. 11
signed .. 11
unsigned.. 11

Internal Assembler ... 19
vs. MPASM assembler...................................... 20

Internet Address... 5
Interrupt

High-priority... 27, 31
Latency ... 31
Low-priority ... 27, 31
Nesting.. 31
Saving and Restoring Context 27, 30
Vectors.. 29

interrupt pragma... 27–31
Interrupt Service Routine27–31, 48, 105
interruptlow pragma ... 27–31

K
-k ... 11, 77
Keywords

_asm ... 19
_endasm ... 19
auto .. 12–13, 38, 41, 42
const ... 14
extern 12, 34, 41, 43, 45
far...14, 23, 37
near .. 14, 23, 25, 34, 37
overlay ... 12–13
ram.. 14
register... 12
rom... 14, 16–17, 21, 26
static ..12–13, 41, 43
typedef ... 12

Index

© 2005 Microchip Technology Inc. DS51288F-page 111

volatile..14, 34

L
Large Memory Model ... 37
Linker Scripts

ACCESSBANK .. 25
SECTION..20, 26

Little Endian ..12, 105
long

signed ... 11
unsigned... 11

long short int ... 11
Low-priority Interrupt ...27, 31
-ls... 41

M
Macros

Defining... 9
Inline Assembly

ClrWdt() ... 35
Nop() .. 35
Reset().. 35
Rlcf(...) ... 35
Rlncf(...) ... 35
Rrcf(...) ... 35
Rrncf(...) ... 35
Sleep().. 35
Swapf(...) ... 35

Predefined
__18CXX.. 15
__EXTENDED18__15, 100
__LARGE__ ... 15
__PROCESSOR ... 15
__SMALL__ ... 15
__TRADITIONAL18__15, 100

MATH_DATA...30, 48
MCC_INCLUDE ... 15
Memory Models ... 37

Default .. 37
Large... 37
Overriding ... 37
Small ... 37

Microchip Internet Web Site 5
Minimal Context ... 27
-ml..15, 37
Modes

Extended..99–101
COFF File ...62, 64

Non-extended ..99–101
Access Section23, 82
COFF File .. 64
static Parameters 43
Storage Classes12, 13, 81

Predefined Macro ... 15
Selecting the Mode9–10, 82

MPASM assembler ...19
MPLINK linker ... 12, 13, 20, 46
-ms..15, 37

N
near.. 14, 23, 25, 34, 37
--no-extended ... 9–10
Non-extended Mode... 99–101

Access Section ... 23, 82
COFF File ... 64
Predefined Macro.. 15
Return Values ... 40
Selecting the Mode9–10, 82
static Parameters ... 43
Storage Classes.....................................12, 13, 81

Nop() .. 35
-nw... 8

O
-O-... 49
-Oa+... 23, 101
-Ob-... 49, 50
-Ob+... 49, 50
-Od-... 49, 55
-Od+... 49, 55
-Oi... 15, 78
-Om-... 49
-Om+... 49
-On-... 49, 50
-On+... 49, 50
-Op-... 49, 53
-Op+..49, 53, 54, 55
-Opa- ...49, 55, 56
-Opa+ ...49, 55, 56
Optimizations ... 49

Banking ... 49, 50
Branch... 49, 50
Code Straightening49, 51–52
Copy Propagation49, 53–54, 55
Dead Code Removal................................... 49, 55
Duplicate String Merging............................. 49, 49
Procedural Abstraction...........................49, 55–56
Redundant Store Removal.......................... 49, 54
Tail Merging .. 49, 52
Unreachable Code Removal....................... 49, 53
WREG Content Tracking 49, 51

-Or-... 49, 54
-Or+... 49, 54
-Os-... 49, 51
-Os+..49, 51, 52
-Ot-... 49, 52
-Ot+... 49, 52
-Ou-... 49, 53
-Ou+... 49, 53
Output Files.. 8
overlay ...12–13, 99, 100
-Ow-... 49, 51
-Ow+... 49, 51

Index

© 2005 Microchip Technology Inc. DS51288F-page 112

P
-p.. 9, 15, 35, 59
p18cxxx.h.. 35
-pa=n .. 56
PC... 48
PCLATH .. 48
PCLATU .. 48
Pointer

Frame ..38, 48
Initializing..38, 41

Sizes ... 37
Stack..38, 48

Pointers
ram ..14, 17
rom ..14, 17, 37
To Data memory. See ram Pointers
To Program Memory. See rom Pointers

PORTA ...34–35, 36
Pragmas

#pragma config.. 33
#pragma interrupt27–31
#pragma interruptlow..........................27–31
#pragma sectiontype20–23
#pragma varlocate31–32

Predefined Macros
__18CXX... 15
__EXTENDED18__.....................................15, 100
__LARGE__ .. 15
__PROCESSOR .. 15
__SMALL__ .. 15
__TRADITIONAL18__15, 100

Processor
Generic .. 9, 59, 64, 101
Selection ..9–10
Type...9–10

Processor-specific Header Files 34
PROD .. 48
PRODH .. 40
PRODL .. 40
Program Memory Pointer. See rom Pointers

R
RAM

Access ...14, 23, 34
ram... 14

Pointers..14, 17
register .. 12
Register Definition Files ... 34
Register Definitions File34, 36
Reserved Section Names .. 23
Reset Vector .. 46
Reset() .. 35
RETFIE. See Return From Interrupt 27
Return from Interrupt...27, 28
Return Value

Location .. 40
Rlcf(...).. 35
Rlncf(...) ... 35
rom.. 14, 16–17, 21, 26

Pointers..14, 17, 37

romdata ... 16, 20, 21, 22, 26
Rrcf(...) .. 35
Rrncf(...).. 35
Run-time Model.. 37–48

S
-sca... 13, 101
-sco... 13, 101
-scs... 13, 101
Section ... 20

.cinit ... 46

.stringtable .. 16

.tmpdata... 30, 48
Absolute .. 20
Assigned ... 20
Attributes... 22–26

access .. 23, 25
overlay.. 25, 26

code ... 20–26
Configuration Words ... 33
Default... 22–23
idata ..20–23, 26, 46
MATH_DATA... 30, 48
Reserved Names .. 23
romdata 16, 20, 21, 22, 26
udata 20, 21, 22, 23, 26, 27
Unassigned ... 20

Section Type Pragma... 20–23
SFR. See Special Function Registers
Shadow Registers .. 27, 31
short

signed ... 11
unsigned... 11

short long int ... 11
signed ... 11
unsigned... 11

Sizes
Pointer... 37

Sleep() .. 35
Small Memory Model ... 37
Software Stack13, 27, 31, 38, 41, 42, 46

Large... 41
Special Function Registers 27, 34, 35, 36, 48

BSR...27, 28, 35, 48
FSR0 ... 40, 48
FSR1 ..38, 46, 48
FSR2 ..38, 41, 46, 48
PC.. 48
PCLATH ... 48
PCLATU ... 48
PORTA ..34–35, 36
PROD ... 48
PRODH ... 40
PRODL ... 40
STATUS ... 28, 48
TABLAT ... 48
TBLPTR ... 48
WREG 27, 28, 35, 40, 42, 48

Index

© 2005 Microchip Technology Inc. DS51288F-page 113

Stack
Hardware .. 38
Pointer ...38, 48
Software..........................13, 27, 31, 38, 41, 42, 46

Large ... 41
Startup Code...46–47

Customizing .. 47
static 12–13, 41, 43, 99, 100
STATUS ...27, 28, 48
Storage Classes..12–13

auto .. 12–13, 38, 41, 42
extern 12, 34, 41, 43, 45
overlay.. 12–13, 99, 100
register... 12
static 12–13, 41, 43, 99, 100
typedef... 12

Storage Qualifiers .. 14
const ... 14
far ..14, 23, 37
near .. 14, 23, 25, 34, 37
ram ... 14
rom .. 14, 16–17, 21, 26
volatile..14, 34

Structures
Anonymous..18–19, 34

Swapf(...) ... 35

T
TABLAT .. 48
TBLPTR .. 48
Temporaries

Compiler .. 27, 28, 30, 48
typedef .. 12

U
udata ... 20, 21, 22, 23, 26, 27

V
varlocate pragma ..31–32
-verbose .. 7
volatile ...14, 34

W
-w... 8
WREG ... 27, 28, 35, 40, 42, 48
WWW Address... 5

DS51288F-page 114 © 2005 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/01/05

	Preface
	Introduction
	Document Layout
	Conventions Used in this Guide
	PIC18 Development References
	C References
	Other References
	The Microchip Web Site
	Development Systems Customer Change Notification Service
	Customer Support

	Chapter 1. Introduction
	1.1 Overview
	1.2 Invoking the Compiler

	Chapter 2. Language Specifics
	2.1 Data Types and Limits
	2.2 Data Type Storage - Endianness
	2.3 Storage Classes
	2.4 Storage �Qualifiers
	2.5 Include File Search Paths
	2.6 Predefined Macro Names
	2.7 ISO Divergences
	2.8 Language Extensions
	2.9 Pragmas
	2.10 Processor-specific Header Files
	2.11 Processor-specific Register Definitions Files

	Chapter 3. Run-time Model
	3.1 Memory Models
	3.2 Calling Conventions
	3.3 Startup Code
	3.4 Compiler Managed Resources

	Chapter 4. Optimizations
	4.1 Duplicate String Merging
	4.2 Branches
	4.3 Banking
	4.4 WREG Content Tracking
	4.5 Code Straightening
	4.6 Tail Merging
	4.7 Unreachable Code Removal
	4.8 Copy Propagation
	4.9 Redundant Store Removal
	4.10 Dead Code Removal
	4.11 Procedural Abstraction

	Chapter 5. Sample Application
	Appendix A. COFF File Format
	A.1 struct filehdr - File Header
	A.2 struct opthdr - Optional File Header
	A.3 struct scnhdr - Section Header
	A.4 struct reloc - Relocation Entry
	A.5 struct syment - Symbol Table Entry
	A.6 struct coff_lineno - Line Number Entry
	A.7 struct aux_file - Auxiliary Symbol Table Entry for a Source�File
	A.8 struct aux_scn - Auxiliary Symbol Table Entry for a Section
	A.9 struct aux_tag - Auxiliary Symbol Table Entry for a struct/union/enum Tagname
	A.10 struct aux_eos - Auxiliary Symbol Table Entry for an End of struct/union/enum
	A.11 struct aux_fcn - Auxiliary Symbol Table Entry for a Function�Name
	A.12 struct aux_fcn_calls - Auxiliary Symbol Table Entry for Function Call References
	A.13 struct aux_arr - Auxiliary Symbol Table Entry for an Array
	A.14 struct aux_eobf - Auxiliary Symbol Table Entry for the End of a Block�or�Function
	A.15 struct aux_bobf - Auxiliary Symbol Table Entry for the Beginning of a Block�or�Function
	A.16 struct aux_var - Auxiliary Symbol Table Entry for a Variable of Type struct/union/enum
	A.17 struct aux_field - Auxiliary Entry for a bit field

	Appendix B. ANSI Implementation-defined Behavior
	B.1 Introduction
	B.2 Identifiers
	B.3 Characters
	B.4 Integers
	B.5 Floating-point
	B.6 Arrays and Pointers
	B.7 Registers
	B.8 Structures and Unions
	B.9 bit fields
	B.10 Enumerations
	B.11 Switch Statement
	B.12 Preprocessing Directives

	Appendix C. Command-line Summary
	Appendix D. MPLAB C18 Diagnostics
	D.1 Errors
	D.2 Warnings
	D.3 Messages

	Appendix E. Extended Mode
	E.1 Source Code Compatibility
	E.2 Command-line Option Differences
	E.3 COFF File Differences

	Glossary
	Index
	Worldwide Sales and Service

